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Abstract

We study the joint portfolio and information choice problem of institutional in-
vestors who are concerned about their performance relative to a benchmark.
Benchmarking influences information choices through two distinct economic
mechanisms. First, benchmarking reduces the number of shares in investors’
portfolios that are sensitive to information. Hence, the value of private informa-
tion declines. Second, benchmarking limits investors’ willingness to speculate.
While this reduces the value of private information as well, importantly it also
adversely affects information aggregation. In equilibrium, investors acquire less
information and informational efficiency declines. As a result, return volatil-
ity increases, and less-benchmarked institutional investors outperform more-
benchmarked ones.
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Institutional investors own a majority of U.S. equity and account for most of the trans-

actions and trading volume in financial markets.1 Notably, the importance of relative per-

formance concerns for institutional investors has grown steadily over the past years. That

is, the performance of many institutions is nowadays evaluated relative to a benchmark

portfolio (“benchmarking”), either explicitly, for example, through performance fees,2 or

implicitly, for instance, due to the flow-performance relation.

There is now a growing body of literature that studies the asset pricing implications of

benchmarking for the case of symmetrically informed institutional investors. In contrast,

the focus of this paper is on the impact of benchmarking on information acquisition and

informational efficiency. In particular, our objective is to understand the economic mecha-

nisms through which the growth of assets under management by benchmarked institutions

affects informational efficiency and asset prices.

For that purpose, we develop an equilibrium model of joint portfolio and information

choice that explicitly accounts for relative performance concerns. The two key features of

the model are (i) that all institutional investors endogenously decide on the precision of

their private information, and (ii) that a fraction of institutional investors (“benchmarked

investors”) are concerned about their performance relative to a benchmark. Otherwise the

framework is kept as simple as possible to illustrate the economic mechanisms in the clearest

possible way; for example, for most of the analysis we focus on the case in which investors

can trade a risk-free bond and a single risky stock. Varying the fraction of benchmarked

investors, or, equivalently, the share of assets managed by benchmarked institutions, will

be our key comparative statics analysis to illustrate the implications of benchmarking.

We identify two distinct economic channels through which benchmarking influences

investors’ information choices: (i) information-scale effects and (ii) risk-taking effects. Both

mechanisms are driven by the interaction between portfolio and information choice. We

1For evidence on institutional ownership and trading volume, see French (2008), U.S. Securities and
Exchange Commission (2013), Stambaugh (2014), and Griffin, Harris, and Topaloglu (2003), respectively.

2For example, recently, many fund managers have introduced new performance-linked fee structures,
including AllianceBernstein, Allianz Global Investors, Equitile, Fidelity International and Orbis Investment
Management. Also, Japan’s Government Pension Investment Fund, the world’s largest retirement fund,
introduced a system whereby it pays all active managers a fee based on their return relative to a benchmark.
Moreover, individual portfolio manager’s compensation is also often performance-based (see Ma, Tang, and
Gomez (2018)).
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illustrate these two effects by means of two economic settings, the first one of which keeps,

by design, investors’ risk appetite and, hence, aggregate risk-bearing capacity fixed.

In particular, we illustrate information-scale effects arising from benchmarking in a

tractable model in which institutional investors have constant absolute risk-aversion util-

ity but a preference for the early resolution of uncertainty.3 We show that benchmarked

investors’ portfolios can be decomposed into two components. First, the standard mean-

variance portfolio, that is, the optimal portfolio of non-benchmarked investors. This com-

ponent is not affected by benchmarking but rather driven by investors’ posterior beliefs.

Second, a hedging portfolio arising from benchmarking. Intuitively, because benchmarked

institutional investors strive to do well when the benchmark performs well, they over-weight

the benchmark portfolio. This hedging portfolio is designed to track the benchmark, not to

outperform it, and, consequently, it is information-insensitive.

Importantly, conditional on investors’ information choices, these investment decisions do

not affect the sensitivity of the stock price with respect to the payoff or the noise. Hence,

benchmarking does not adversely affect information aggregation. Instead, benchmarking re-

duces the value of information and, thus, investors’ incentives to acquire private information.

Intuitively, once the stock market clears, the aggregate—information-insensitive—hedging

demand of the benchmarked institutions reduces the “effective supply” of the stock, that

is, the number of shares in the economy that are available for speculation.4 As a result, for

all—benchmarked and non-benchmarked—investors, the expected number of shares in their

portfolio that are sensitive to information declines.5 Because private information is then

applied to fewer shares, its marginal value is lower. With no change in information costs,

investors acquire less private information. Consequently, price informativeness declines in

the fraction of benchmarked investors in the economy. This, in turn, implies a higher return

volatility since the price tracks the stock’s payoff less closely.

3These preferences are chosen for illustration only. In the case of constant relative risk-aversion pref-
erences, as discussed next, information-scale effects are also present. But, the model is less tractable and
benchmarking affects the aggregate risk-bearing capacity as well.

4The same effect would arise in the presence of “index investors,” i.e., investors whose portfolio choice is
not driven by (private) information.

5This holds for the economically relevant case in which the effective supply is positive which guarantees
a positive risk premium for the stock.

2



The implications described thus far follow from scale effects in information acquisition.

In particular, the decline in price informativeness is entirely determined by the decline in

the investors’ precision choices. However, benchmarking also affects information aggregation

through risk-taking effects, which we illustrate using a model with constant relative risk-

aversion preferences.6

Benchmarked investors’ portfolios can be (approximately) decomposed into the same two

components as in the mean-variance setting. The key difference is that relative performance

concerns now also affect the mean-variance portfolio. In particular, benchmarking limits

institutional investors’ willingness to speculate.7 Hence, benchmarked investors not only

acquire less information but also trade less aggressively on a particular piece of information

and, thus, benchmarking adversely affects information aggregation. This amplifies the

decline in price informativeness.

Risk-taking effects have important implications. For example, in contrast to the case of

mean-variance preferences, the information choices of benchmarked and non-benchmarked

institutional investors differ. In particular, benchmarked investors choose a lower precision

of private information. As a result, benchmarked investors are less well informed and, hence,

earn lower expected portfolio returns than non-benchmarked investors. Moreover, as the

assets under management of benchmarked institutions increase, less information is revealed

through the public stock price, such that the “information gap” and, hence, the return gap

between investors widen. For realistic calibrations, some of the asset-pricing implications

change even qualitatively. For example, the price of the stock can decline in the fraction of

benchmarked investors, or, equivalently, its expected excess return can increase.

Finally, we study two extensions of our basic economic framework. First, we extend

our model to multiple stocks and document that informational efficiency also deteriorates

for stocks that are not part of the benchmark, although to a smaller extent because the

information-scale effect is absent for non-index stocks. Second, we study benchmarking

concerns that are nonlinear in the benchmark’s performance—in line with asymmetric per-

6Because the equilibrium price function in this model is nonlinear, it is considerably less tractable and
we rely on a novel numerical solution method to solve it.

7Technically, benchmarking increases the local coefficient of relative risk-aversion because proportional
movements in an investor’s wealth have a larger impact in the presence of relative performance concerns.
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formance fee structures and implicit in the flow-performance relationship. We demonstrate

that asymmetric benchmarking concerns can mitigate the adverse effects of benchmarking

on information choice and information aggregation.

We also make a methodological contribution by developing a novel numerical solution

approach that allows us to determine the equilibrium in noisy rational expectations mod-

els with nonlinear price functions. Our approach differs from previous attempts, such as

Bernardo and Judd (2000), in that it does not rely on a parameterization of the price law

and the asset demand nor on the projection method. Our solution technique is flexible

and could also be used to study rational expectation equilibrium models in the presence of

constraints or frictions.

The two papers that are closest to our work are Admati and Pfleiderer (1997) and

Garćıa and Strobl (2011), whose results and implications, however, are distinctly different.

Admati and Pfleiderer (1997) study linear benchmarking concerns in the compensation of

privately informed portfolio managers, but in a framework with CARA preferences and an

exogenous price process. They document that, because each manager can use his portfolio

choice to “undo” the benchmarking component in his compensation, the manager’s optimal

information choice is not affected by relative performance concerns. In contrast, taking

into account the effect of investors’ portfolio choices on the market-clearing stock price,

we illustrate that benchmarking leads to a decline in information acquisition. We also

document a novel effect resulting from benchmarked investors’ risk-taking.

Garćıa and Strobl (2011) study how relative wealth concerns affect investors’ incentives

to acquire information. They demonstrate that, when an investor’s utility depends on the

consumption of the average investor, complementarities in information acquisition arise,

introducing the possibility of multiple “herding” equilibria. These complementarities can

lead to an increase in informed trading, thereby improving price informativeness. The key

difference is that, in our framework, investors have relative performance concerns (with

respect to a benchmark), and not relative wealth concerns (with respect to other investors).

As a result, in our setting, no complementarities in information choice arise and price

informativeness declines.
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Kacperczyk, Nosal, and Sundaresan (2018) develop a rational expectations model with

market power and demonstrate that active investors shift their information choice in reaction

to an increase in the size of passive investors. As a result, price informativeness declines.

While passive investors in their model are, by definition, uninformed, the benchmarked

investors in our framework endogenously choose the precision of their private information.

The economic framework that we develop builds on two independent strands of research:

first, the asset pricing literature on the stock market implications of benchmarking (absent

information choice). Cuoco and Kaniel (2011) and Basak and Pavlova (2013) study models

with CRRA preferences and relative performance concerns. They document that, in the

presence of benchmarking, institutional investors optimally tilt their portfolio toward the

benchmark, creating upward price pressure.8 Buffa, Vayanos, and Woolley (2017) study a

setup with CARA preferences in which, due to agency frictions, asset-management contracts

endogenously depend on fund managers’ performance relative to a benchmark.

Unlike these papers, we explicitly model investors’ joint information and portfolio choice

in the presence of benchmarking. Notably, allowing for endogenous information choice

can lead to qualitatively different asset pricing implications. For example, stock prices

can decline in the fraction of benchmarked investors. We also provide novel predictions

regarding institutional investors’ expected portfolio returns.

Second, our framework builds on the literature on information acquisition in competitive

markets (absent benchmarking).9 Information-scale effects are discussed in van Nieuwer-

burgh and Veldkamp (2009, 2010), who document a feedback effect between information

and portfolio choice through the number of shares investors expect to hold, and Peress

(2010), who demonstrates that better risk-sharing lowers the value of information because

investors expect to hold fewer shares.10

8Related, Brennan (1993) derives a two-factor model, one of which being the benchmark and Buffa and
Hodor (2018) show how heterogeneous benchmarking can result in negative spillovers across assets.

9Our work is also related to recent studies that have relaxed the joint CARA-normal assumption (see,
e.g., Barlevy and Veronesi (2000), Peress (2004), Albagli, Hellwig, and Tsyvinski (2014), Breon-Drish (2015)
and Chabakauri, Yuan, and Zachariadis (2017)).

10Also related, Garćıa and Vanden (2009) show that competition between fund managers makes prices
more informative. Malamud and Petrov (2014) demonstrate that convex compensation contracts lead to
equilibrium mispricing. Kacperczyk, van Nieuwerburgh, and Veldkamp (2016) and Farboodi and Veldkamp
(2017) discuss what data fund managers optimally choose to process. Bond and Garćıa (2016) study the
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Unlike these papers, we explicitly model institutional investors who are concerned about

their relative performance, which allows us to make novel predictions about the relationship

between the size of benchmarked institutions and informational efficiency.

The remainder of the paper is organized as follows. Section 1 introduces our economic

framework and discusses investors’ optimization problems. Sections 2 and 3 discuss how

benchmarking affects informational efficiency as well as asset prices through information-

scale effects and risk-taking effects, respectively. Section 4 discusses two extensions of our

basic framework. Finally, Section 5 summarizes the key predictions and concludes. Proofs

and a description of the numerical solution approach are delegated to the Appendix.

1 The Model

This section introduces our basic economic framework, which explicitly accounts for the

information choices of institutional investors who are concerned about their performance

relative to a benchmark. In particular, we incorporate benchmarking concerns, as in Cuoco

and Kaniel (2011) and Basak and Pavlova (2013), into a competetive rational expectations

equilibrium model of joint portfolio and information choice, as in Verrecchia (1982). We

also discuss investors’ optimization problems and the equilibrium concept.

1.1 Economic Framework

Information Structure and Timing

We consider a static model, which we break up into three (sub-)periods. Figure 1 illustrates

the sequence of the events. In period 1, the information choice period, investors can spend

time and resources to acquire private information about a stock. For example, they may

study financial statements, gather information about consumers’ taste, hire outside financial

advisers, or subscribe to proprietary databases. In particular, each investor i can choose the

consequences of investing solely via the market portfolio and find negative externalities for uninformed
investors.
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information choice period portfolio choice period consumption period

t = 1 t = 2 t = 3

choose precision observe private signal and
stock price. choose portfolio

consume

1

Figure 1: Timing. The figure illustrates the sequence of the events.

precision qi of his private signal Yi. Higher precision will reduce the posterior uncertainty

regarding the stock’s payoff but will increase the information acquisition costs κ(qi).
11

In period 2, the portfolio choice period, investors observe their private signals (with the

chosen precision) and make their investment choice. Prices are set such that markets clear.

In period 3, the consumption period, investors consume the proceeds from their investments.

We denote the expectation and variance conditional on prior beliefs as E1[·] and V ar1(·).

To denote investor i’s expectation and variance conditional on his time-2 information set

Fi = {Yi, P}, we use E2[ · | Fi] (or, E2[ · ]) and V ar2( · | Fi) (or, V ar2( · )).

Investment Opportunities

There exist two financial securities that are traded competitively in the market: a risk-less

asset (the “bond”) and a risky asset (the “stock”). The bond pays an exogenous (gross)

interest rate Rf and is available in perfectly elastic supply. It also serves as the numéraire,

with its price being normalized to one. The stock is modeled as a claim to a random payoff

X, which is only observable in period 3. Its price is denoted by P . The supply of the stock,

denoted by Z, is assumed to be random and unobservable. This prevents the price from

fully revealing the information acquired by the investors and, thus, preserves the incentives

to acquire private information in the first place.

11The information cost function κ is assumed to be continuous, increasing and strictly convex, with
κ(0) = 0. This guarantees the existence of interior solutions and captures the idea that each new piece of
information is more costly than the previous one.
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Investors

There exists a continuum of atomless investors with mass one that we separate into two

groups of institutional investors: (1) a fraction Γ of benchmarked institutions, or, short,

“benchmarked investors,” BI; and (2) a fraction 1−Γ of non-benchmarked institutions, or,

short, “non-benchmarked investors,” NI. Each investor i ∈ {BI,NI} is endowed with the

same initial wealth W0,i, which we normalize to 1.

Motivated by recent theoretical contributions,12 we model the compensation of institu-

tional investors, Ci, as:13

Ci(Wi, RB) = Wi − γiW0,iRB − κ(qi). (1)

Institutional investors’ compensation has two components; first, a standard component re-

lated to terminal wealth Wi (i.e., “assets under management”);14 and, second, a linear

benchmarking component that is related to the performance of the benchmark RB.15 Con-

sequently, γi captures the strength of investor i’s benchmarking concerns; in particular,

while benchmarked institutional investors are concerned about their performance relative

to a benchmark (γi > 0,∀i ∈ BI), non-benchmarked investors are not (γi = 0, ∀i ∈ NI).

Finally, information acquisition costs κ(qi) are deducted.

It is important to highlight that benchmarking is the only source of heterogeneity across

the two groups of institutional investors. In particular, benchmarking does not affect the

12Basak and Pavlova (2013) demonstrate benchmarking formally using an agency-based argument. In
Buffa, Vayanos, and Woolley (2017), investors endogenously—due to agency frictions—make fund managers’
fees sensitive to the performance of a benchmark. Similarly, Sotes-Paladino and Zapatero (2016) show that
a linear benchmark-adjusted component in managers’ contracts can benefit investors.

13This compensation scheme is chosen for simplicity and analytical tractability. In earlier versions of
the paper, we had explicitly modeled the compensation of institutional investors as a function of their
“out-performance,” i.e., the difference between the investors’ return and the benchmark return. This has,
qualitatively, no effect on the results.

14Considering instead a fraction of terminal wealth, e.g., βiWi, has qualitatively no impact on the results.
It affects the total amount of information that investors acquire, but not the impact of benchmarking.

15These types of benchmarking concerns capture linear (“Fulcrum”) performance fees. The 1970 Amend-
ment of the Investment Advisers Act of 1940 restricts mutual fund fees in the U.S. to be of the Fulcrum type.
An investor’s desire to perform well relative to a benchmark may also be driven by social status, instead of
monetary incentives. Note also that these benchmarking concerns do not capture relative wealth concerns,
these are discussed in Garćıa and Strobl (2011).
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investors’ financial wealth but only their utility; that is, in the portfolio choice period, both

groups of institutional investors have the same capital available for investment.

We consider a general form of investors’ preferences over compensation Ci:

U1,i = E1

[
u1 (E2 [u2(Ci)] )

]
, (2)

in which the inner utility function u2 governs risk-aversion and the outer utility function

u1 governs the preference for the timing of the resolution of uncertainty.16 Specifically, if

u1 is linear, investors are indifferent about the timing, whereas a convex (concave) function

u1 implies a preference for early (late) resolution of uncertainty. In the next sections, we

explore specific examples.

The specification of the benchmarked investors’ utility over compensation Ci exhibits

two important characteristics that let them behave differently from non-benchmarked in-

vestors. First, benchmarked investors have an incentive to post a high return when the

benchmark performs well or, formally, their marginal utility is increasing in RB. Second,

benchmarked investors’ utility function is decreasing in the performance of benchmark, thus

affecting information choice. Note that our definition of the investors’ compensation scheme

in (1) shares many similarities with the specifications in Cuoco and Kaniel (2011) and Basak

and Pavlova (2013).17

16Technically, u1 and u2 are assumed to be continuous, twice differentiable, and increasing functions.
17Compensation in Cuoco and Kaniel (2011) is composed of a constant “load fee,” a fraction of terminal

wealth, and a performance-related component. Basak and Pavlova (2013) study a tractable specification
similar to ours. However, utility is increasing in the benchmark (which is less important in the absence of
information choice because only marginal utility matters). In the case of γi = 1, our specification in (1) is
comparable to the alternative specification discussed in their Remark 1.
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1.2 Investors’ Optimization Problems and Equilibrium

Portfolio and Information Choice

In the portfolio choice period (t = 2), investor i chooses the number of shares of the stock,

θi, in order to maximize expected utility; conditional on his posterior beliefs and price P :

U2,i = max
θi

E2

[
u2(Ci) | Fi

]
, (3)

with terminal wealth, Wi, being given by Wi = W0,iRf + θi (X − PRf ).18

In the information choice period (t = 1), investor i chooses the precision of his private

signal, qi, in order to maximize expected utility over all possible realizations of his private

signal Yi and the public price P , anticipating his optimal portfolio choice in period 2:

max
qi≥0

E1

[
u1(U2,i)

]
. (4)

Equilibrium Definition

A rational expectations equilibrium is defined by portfolio choices {θi}, information choices

{qi}, and prices {P} such that:

1. θi and qi solve investor i’s maximization problems in (3) and (4), taking P as given.

2. Expectations are rational; that is, the average precision of private information im-

plied by aggregating investors’ precision choices equals the level assumed in investors’

optimization problems (3) and (4).

3. Aggregate demand equals aggregate supply.

Note that, in equilibrium, the stock price plays a dual role: It clears the security market

and aggregates as well as disseminates investors’ private information.

18This follows from the two budget equations Wi = θiX + θBi Rf and W0,i = θi P + θBi by solving the
second equation for θBi (number of shares of the bond) and plugging the solution into the first.
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2 Benchmarking and Information Scale Effects

In this section, we illustrate how benchmarking affects equilibrium due to information-scale

effects. For this purpose, we rely on a tractable model that is designed to provide the

economic intuition and allows for closed-form solutions of all quantities in the economy. In

particular, we demonstrate that, in the presence of information-scale effects, price informa-

tiveness deteriorates. Importantly, this drop in price informativeness is entirely determined

by a decline in the value of private information and, hence, a decline in investors’ average

precision choices, whereas information aggregation is not adversely affected.

2.1 Setup

We assume that the payoff of the stock, X, and its supply, Z, are normally distributed,

with X ∼ N (µX , σ
2
X) and Z ∼ N (µZ , σ

2
Z). The investors’ private signals are given by

Yi = X + εi, with εi ∼ N (0, 1/qi). Investors have “mean-variance preferences” of the

Kreps-Porteus type. Their time-1 utility function, U1,i, is given by:19

U1,i = E1

[
E2 [Ci]−

ρ

2
V ar2 (Ci)

]
, (5)

where compensation Ci is given by Ci = Wi−γi (X − PRf )−κ(qi), with W0,iRB ≡ X−PRf

capturing the performance of the benchmark. These preferences lead, in period 2, to the

same portfolio that obtains under CARA expected utility, but investors have a preference

for the early resolution of uncertainty.20 They can also arise in a setting with risk-neutral,

profit-maximizing portfolio managers who invest on behalf of clients with CARA expected

utility (see, e.g., the discussion in footnote 10 in van Nieuwerburgh and Veldkamp (2009)).

It is important to highlight that in this setting, by design, benchmarking does not

affect the benchmarked investors’ risk appetite. As a result, changes in the fraction of

benchmarked institutional investors, Γ, have no impact on aggregate risk-bearing capacity.

19This is a special case of the general form in (2), with u1(x) = − ln(−x) and u2(x) = − exp(−ρ x).
20Kreps and Porteus (1978) provide the axiomatic foundations for this class of non-expected utility, which

allows to disentangle risk-aversion from the elasticity of inter-temporal substitution. The generalizations of
iso-elastic utility in Epstein and Zin (1989) and Weil (1990) are widely used in asset pricing.
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2.2 Portfolio Choice and the Equilibrium Price

An investor’s optimization problem must be solved in two stages, starting with the optimal

portfolio choice in period 2, taking information choices as given. The following theorem

characterizes an investor’s optimal portfolio choice for arbitrary values of his posterior mean

µ̂X,i ≡ E2[X | Fi] and posterior precision hi ≡ V ar2(X | Fi)−1.

Theorem 1. Conditional on an investor’s posterior beliefs, described by µ̂X,i and hi, and

the stock price P , the optimal stock demand equals:

θi = hi
µ̂X,i − P Rf

ρ
+ γi ≡ θMV

i + γi. (6)

The optimal demand for the stock has two components. First, for all investors, the

standard mean-variance portfolio, θMV
i . Second, for benchmarked investors, a hedging

demand γi > 0. Intuitively, benchmarked investors have the desire to acquire assets that

do well when the benchmark does well, or, equivalently, assets that co-vary positively with

the benchmark. In our single-asset economy, the stock, also serving as the benchmark,

naturally co-varies positively with the benchmark.

The mean-variance portfolio, θMV
i , is independent of the strength of an investor’s bench-

marking concerns, γi. In contrast, the hedging component is increasing in the investor’s

benchmarking concerns, γi, but is information-insensitive, that is, it is not affected by his

posterior beliefs. Intuitively, it is designed to closely track or, formally, co-vary with, the

benchmark, and not meant for speculation.

Aggregating the demand of both groups of institutional investors and imposing market-

clearing delivers the equilibrium stock price:
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Theorem 2. Conditional on investors’ information choices, described by qi, ∀i, there exists

a unique linear rational expectations equilibrium:

P Rf =
1

h̄

(
µX
σ2
X

+
µZ q̄

σ2
Z ρ

+ ρ γ̄

)
+

1

h̄

(
h̄− 1

σ2
X

)
X − 1

h̄

(
q̄

ρ σ2
Z

+ ρ

)
Z, (7)

where h0 ≡
1

σ2
X

+
q̄2

ρ2 σ2
Z

, h̄ ≡ h0 + q̄, (8)

q̄ ≡
∫ Γ

0
qBIi di+

∫ 1

Γ
qNIi di, and γ̄ ≡

∫ Γ

0
γi di. (9)

The characterization of the equilibrium price in (7) is standard for this type of economy,

and the variables defined in (8) and (9) allow for intuitive interpretations. h0 equals the

sum of the precisions from the prior, 1/σ2
X , and from the price signal, q̄2/(ρ2 σ2

Z); hence,

it characterizes the precision of public information. q̄ measures the precision of the private

information of the average investor. Consequently, h̄ governs average aggregate precision,

that is, the precision of public and private information of the average investor. Finally,

γ̄ captures the degree of benchmarking in the economy, thereby aggregating the strength

of the relative performance concerns of each benchmarked investor, γi, and their size in

the economy, Γ. Note that, for ease of exposition, we assume for all graphical illustrations

that the strength of the benchmarked investors’ relative performance concerns coincide:

γi = γ,∀i ∈ BI. As a result, γ̄ simplifies to Γ γ and, conditional on γ, all variation in γ̄ is

driven by the fraction of benchmarked institutions, Γ.

Conditional on information choices, the equilibrium price exceeds the price in an econ-

omy without benchmarking by (ρ γ̄)/h̄; hence, the price is increasing in the degree of bench-

marking γ̄. Intuitively, conditional on a given supply Z, the excess demand for the stock

resulting from benchmarked investors’ hedging demand, drives up the price.21

It is important to highlight that information aggregation is not adversely affected by

benchmarking in this setting. In particular, one can derive the following corollary that

21Technically, ∂(PRf )/∂γ̄ = ρ/h̄. Because the magnitude of an individual investor’s hedging demand rela-
tive to his mean-variance portfolio is increasing (decreasing) in risk-aversion (aggregate posterior precision),
the sensitivity of the price with respect to benchmarking is positively (negatively) related to ρ (h̄).
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describes the ability of financial markets to aggregate private information in the presence

of benchmarking:

Corollary 1. Conditional on investors’ information choices, described by qi, ∀i, price in-

formativeness, defined as the precision of the public price signal, is given by:

h0 −
1

σ2
X

=
q̄2

ρ2 σ2
Z

. (10)

Specifically, equation (10) implies that, conditional on investors’ information choices

(as aggregated by q̄), price informativeness is not affected by γ̄. Thus, given information

choices, a shift in the degree of benchmarking in the economy has no impact on how much

information is revealed by the public stock price or how much investors can learn from the

price. Intuitively, because the aggregate hedging demand is fully predictable, it only affects

the level of the stock price but not its sensitivity with respect to the payoff or the noise.22

2.3 Information Choice

While Theorem 2 and Corollary 1 take the information environment as given, information

choices are actually an endogenous outcome of the model. At time t = 1, each investor i

chooses the precision of his private signal, qi, in order to maximize utility (5), anticipating his

optimal portfolio choice in period 2. In order to impose rational expectations, we substitute

the optimal stock demand (6) into wealth Wi and, hence, compensation, Ci, which yields

the following time-1 objective function:

U1,i = Rf

(
W0,i −

κ(qi)

Rf

)
+

1

2 ρ
E1

[
z2
i

]
, (11)

where zi ≡
√
hi (µ̂X,i − P Rf ) denotes the investor’s time-2 expected Sharpe ratio—a func-

tion of Yi, qi and P . Intuitively, E1

[
z2
i

]
governs the squared Sharpe ratio that investor i

expects to achieve in the information choice period (t = 1).

22Accordingly, the signal-to-noise ratio, defined as the ratio of the price sensitivities with respect to the
payoff and the noise, given by −q̄/ρ, is also unaffected by γ̄.
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The objective function captures the “information choice trade-off.” Higher precision

qi leads to higher information acquisition costs κ(qi), thereby reducing time-1 utility. On

the other hand, higher precision qi increases the posterior precision hi, the time-1 expected

squared Sharpe ratio E1[z2
i ] and, thus, time-1 utility.

Notably, benchmarked investors (i ∈ BI) “undo” the benchmarking component in their

compensation; that is, a benchmarked investor’s time-1 objective function does not depend

on the strength of his individual benchmarking concerns, γi and, hence, coincides with

the objective function of a non-benchmarked investor. As a result, the two groups of

institutional investors actually face the same information choice problem. Accordingly, in

the following, we discuss the information choice problem of a generic institutional investor

i ∈ {BI,NI}, noting that qi = qBIi = qNIi .

Computing the first-order condition of U1,i with respect to qi, delivers an investor’s best

information choice, given arbitrary precision choices by the other investors:

Theorem 3. Conditional on the average private signal precision, q̄, investor i’s optimal

signal precision qi(q̄) is the unique solution of:

2κ′(qi) =
1

ρ

[
1

h̄2

(
ρ2
(
σ2
Z + (µZ − γ̄)2

)
+ h̄+ q̄

)]
︸ ︷︷ ︸

≡A(γ̄,q̄)

. (12)

If µZ − γ̄ > 0, an investor’s best information choice qi(q̄) shifts down when the degree of

benchmarking in the economy, γ̄, increases. Formally, ∂A/∂γ̄ < 0.

Equation (12) characterizes that, at the optimum, the marginal cost of private infor-

mation, κ′(qi), equals the marginal benefit which is governed by A(γ̄, q̄) and risk aversion

ρ. Hence, the degree of benchmarking γ̄ affects the marginal value of private information.

In particular, if the “effective supply” of the stock, that is, the supply after accounting for

the aggregate hedging demand is positive (µZ − γ̄ > 0),23 the value of private information

declines in the degree of benchmarking—for benchmarked and non-benchmarked investors.

23This is the economically interesting case because it guarantees that the stock’s risk premium is positive
(confer (A16) in Appendix A).
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Figure 2: Information demand. The figure depicts an investor’s optimal signal precision qi as a function
of the average private signal precision q̄—for different degrees of benchmarking, as captured by the fraction of
benchmarked investors, Γ. The graph is based on the framework described in Section 2.1, with the following
parameter values: µX = 1.05, σ2

X = 0.25, µZ = 1.0, σ2
Z = 0.2, ρ = 3, γi = γ = 1/3 ∀i ∈ BM, q̄ = 0.45, and

an information cost function κ(qi) = ω q2
i , with ω = 0.015.

This effect is illustrated in Figure 2, which depicts an investor’s optimal signal precision

qi as a function of the average private signal precision q̄ for different degrees of bench-

marking, as captured by the fraction of benchmarked investors in the economy, Γ. Due

to strategic substituability (see, e.g., Grossman and Stiglitz (1980)), the investor’s optimal

signal precision is declining in the average private signal precision—irrespective of the de-

gree of benchmarking (see also the explicit expression (A12)). Intuitively, a higher average

private signal precision implies that more information is revealed through the public price

signal, thereby reducing the investor’s incentive to acquire private information himself.

However, most important for us is that the investor’s optimal private signal precision

shifts down as the degree of benchmarking increases—irrespective of the average private

signal precision. This result is driven by information-scale effects. Intuitively, when making

information choices in period 1, each investor take into account the expected number of

shares in his portfolio that are sensitive to private information. In particular, one can

re-write investor i’s time-2 expected squared Sharpe ratio (divided by ρ) as:

z2
i

ρ
= hi

µ̂X,i − PRf
ρ

× (µ̂X,i − PRf ) = θMV
i × (E2[X]− PRf ) .
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Hence, the benefit of private information in (11) is governed by the product of the mean-

variance portfolio (the information-sensitive part of the portfolio) and the time-2 expected

excess stock return. Taking into account market-clearing, the aggregate hedging demand

reduces the expected number of shares in the information-sensitive part (θMV
i ).24 Because

returns to information are increasing in the number of shares (i.e., one piece of informa-

tion can be used for many shares), this implies a decline in the marginal value of private

information for all investors. Alternatively, the aggregate hedging demand increases the

stock price for all future states (see Theorem 2), thereby ambiguously reducing its expected

excess return (E2[X] − PRf ). This, in turn, reduces the potential rent from speculating

with private information and, hence, the value of private information.

It is instructive to also study the case of CARA expected utility. The optimal stock

demand and the resulting price function are identical to the case of CARA utility with a

preference for the early resolution of uncertainty and are given by (6) and (7). However,

at the information choice stage, an investor’s best information choice differs. In particular,

given arbitrary precision choices by the other investors, his optimal information choice is

characterized by the following theorem:

Theorem 4. Assume that investors have CARA expected utility. Conditional on the aver-

age private signal precision, q̄, investor i chooses a signal of precision qi(q̄) such that:

2κ′(qi) =
1

ρ

1

h0 + qi
.

Hence, the marginal benefit of private information is governed by the investor’s posterior

precision h0 +qi and his risk-aversion ρ. Importantly, his optimal information choice qi does

not depend on the degree of benchmarking in the economy, γ̄; implying that information-

scale effects are absent. Graphically, this implies that while the investor’s best information

response is declining in the average private signal precision q̄, the three lines in Figure 2

(for different fraction of benchmarked investors) would coincide.

24In particular, for each investor, the time-1 expectation of the number of shares in his portfolio that are
sensitive to private information is lowered by γ̄ relative to the absence of benchmarking.
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We can now return to the case of mean-variance preferences. Recall that Theorem 3

takes the information choices of the other investors as given. However, in equilibrium, the

information choice of each investor, qi, affects aggregate average precision, q̄, which, in turn,

affects each investor’s information choice. Therefore, the equilibrium value of the average

private signal precision, q̄, is determined by plugging qi in (12) into its definition in (9):

Theorem 5. The average private signal precision, q̄, is the unique solution to:

q̄ =

∫ Γ

0
qBIi (q̄) di+

∫ 1

Γ
qNIi (q̄) di =

∫ 1

0
qi(q̄) di. (13)

If µZ − γ̄ > 0, the average private signal precision, q̄, is declining in the degree of bench-

marking, γ̄. Formally, dq̄/dγ̄ < 0.

This theorem summarizes the key result of this section: An increase in the degree of

benchmarking in the economy, γ̄, leads to a decline in the precision of the private information

of all investors (for the economically relevant case of µZ − γ̄ > 0). Graphically, this result

is illustrated in Figure 2, which shows that the investors’ equilibrium precision choice,

characterized by the intersection between the respective best information response function

and the 45-degree line, declines in the fraction of benchmarked investors, Γ. Panel A of

Figure 3 shows this even more explicitly by depicting the optimal precision of the investors’

private signals, qi, as a function of the fraction of benchmarked investors, Γ. As a result

of the lower precision choices, equilibrium price informativeness, given by q̄2/(ρ2 σ2
Z), also

declines in the degree of benchmarking. This is illustrated in Panel B of Figure 3.

REMARK 1. It is also instructive to consider the case of a single (small) benchmarked

institutional investor with constant absolute risk-aversion and a preference for the early

resolution of uncertainty. Because the marginal value of private information A(γ̄, q̄) does

not depend on the strength of the investor’s individual benchmarking concerns, γi, but only

on the aggregate degree of benchmarking γ̄, such an investor’s information choice is actually

not affected. Intuitively, the expected number of shares in his portfolio that are sensitive

to private information does not decline in the absence of an aggregate hedging demand.
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Figure 3: Equilibrium information choice. The figure shows the optimal private signal precision, qi,
in equilibrium (Panel A) and the precision of the public price signal (“price informativeness”) q̄2/(ρ2 σ2

Z)
(Panel B), as functions of the fraction of benchmarked investors in the economy, Γ. The graphs are based
on the framework described in Section 2.1, with the following parameter values: µX = 1.05, σ2

X = 0.25,
µZ = 1.0, σ2

Z = 0.2, ρ = 3, γi = γ = 1/3∀i ∈ BM, and an information cost function κ(qi) = ω q2
i , with

ω = 0.015.

2.4 Unconditional Asset Prices and Return Moments

Benchmarking also affects the unconditional stock price and return moments. The following

theorem summarizes a first set of results:

Theorem 6. The total derivative of the unconditional stock price S ≡ E1[PRf ] and of

the unconditional expected excess return M ≡ E1[X − PRf ] with respect to the degree of

benchmarking, γ̄, are given by:

dS

dγ̄
=

1

h̄
ρ+

1

h̄2
ρ (µZ − γ̄)

dh̄

dγ̄
, and

dM

dγ̄
=
− ρ
h̄

+
−ρ
h̄2

(µZ − γ̄)
dh̄

dγ̄
.

The stock price is affected directly through the excess demand and indirectly by the

induced change in price informativeness. The direct effect (first component) leads to an

increase in the price. The indirect effect (second component) is of the opposite sign (if

µZ − γ̄ > 0) and lowers the price. Intuitively, with lower price informativeness risk-averse

investors command a price discount. In equilibrium, the total impact on the stock price

depends on the relative importance of the two effects. We find that for realistic parameter
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Figure 4: Equilibrium price and return volatility. The figure shows the unconditional expected
equilibrium stock price S (Panel A) and the unconditional stock return volatility V (Panel B), as functions
of the fraction of benchmarked investors in the economy, Γ. The graphs are based on the framework described
in Section 2.1, with the following parameter values: µX = 1.05, σ2

X = 0.25, µZ = 1.0, σ2
Z = 0.2, ρ = 3,

γi = γ = 1/3∀i ∈ BM and an information cost function κ(qi) = ω q2
i , with ω = 0.015.

values the first effect always dominates; that is, the unconditional price increases, as illus-

trated in Panel A of Figure 4. The impact of benchmarking on the expected excess return

follows accordingly but is of opposite sign. The direct (indirect) effect reduces (increases)

the expected return because it increases (reduces) the stock price.

Finally, benchmarking also affects the unconditional stock return variance:

Theorem 7. The total derivative of the unconditional return variance V 2 ≡ V ar1(X−PRf )

with respect to the degree of benchmarking, γ̄, is given by:

dV 2

dγ̄
= − 1

h̄3

dh̄

dγ̄
.

In particular, an increase in the degree of benchmarking, γ̄, unambiguously leads to an

increase in the unconditional return variance—due to the decline in price informativeness

(dh̄/dγ̄ < 0). This is illustrated in Panel B of Figure 4.
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3 Benchmarking and Risk-Taking Effects

In this section, we discuss a second channel through which benchmarking affects information

choice. For this purpose, we rely on a model with CRRA-preferences which, however, is

considerably less tractable.25 In particular, we demonstrate that benchmarking limits an

investor’s willingness to speculate. As a result, information aggregation is now also adversely

affected. Hence, this “risk-taking effect” amplifies the decline in price informativeness.

Moreover, benchmarked investors choose a lower precision of private information and, as a

result, have lower expected portfolio returns than non-benchmarked investors.

3.1 Setup

We assume that investors have CRRA preferences. Their time-1 utility function UCRRA
1,i is

given by:26

UCRRA
1,i = E1

[
E2

[
C1−ρ
i

1− ρ

]]
= E1

[
C1−ρ
i

1− ρ

]
, (14)

where ρ denotes the curvature parameter in utility and Ci = Wi − γiW0,i (X/P ) − κ(qi)

denotes the investor’s compensation, with RB ≡ (X/P ) capturing the performance of the

benchmark.27,28

For ease of exposition and numerical convenience, we assume that the payoff, X ≥ 0,

is binomially distributed, with equally likely realizations XH ≡ µX + σX and XL ≡ µX −

σX . Similarly, the investors’ private signals, Yi ∈ {YH , YL}, are binomially distributed.29

Intuitively, a higher precision of the private signal, qi, increases an investor’s posterior

precision by increasing the correlation between the payoff, X, and his private signal, Yi;

25The equilibrium price function is nonlinear, and, hence, the model has to be solved numerically. Ap-
pendix B provides the technical details for our novel numerical solution approach.

26This is a special case of the general form in (2), with u1(x) = x and u2(x) = x1−ρ/(1− ρ).
27Note, if a benchmarked investor puts all his wealth into the benchmark, his compensation is given by

Ci = (1− γi)W0,iRB − κ(qi). Thus, we assume that γi << 1, such that buying the benchmark is always a
feasible strategy that yields a strictly positive compensation and, hence, strictly positive marginal utility.

28In contrast to the CARA framework (in which one usually works with dollar returns as they lead to
explicit expressions), we now directly work with percentage returns—as is done in practice.

29The results are robust to incorporating continuous distributions. In particular, the results are qualita-
tively unchanged if one relies on log-normal distributions for the payoff and the private signals, as discussed
in Appendix C and illustrated in Figure A2 therein.

21



formally, P[Xo |Yi = Yo] = 1
2 + 1

2

√
qi
qi+4 , o ∈ {H,L}. To guarantee a positive supply of the

stock and rule out negative compensation (for which CRRA preferences are undefined), we

assume that the supply of the stock, Z, is log-normally distributed, with lnZ ∼ N (µZ , σ
2
Z).

It is important to highlight that, in this setting, the strength of an individual investor’s

benchmarking concerns, γi, has an impact on his local risk-aversion:

Lemma 1. The local curvature of the CRRA-utility function (14) with respect to terminal

wealth, Wi; that is, the local coefficient of relative risk-aversion, ρ̂i, is given by:

ρ̂i = ρ
Wi

Wi − γiW0,iRB − κ(qi)
. (15)

If γi > 0, it holds that ρ̂i ≥ ρ and ∂ρ̂i/∂γi ≥ 0, with strict inequalities for the case RB > 0

(or, equivalently, X > 0).

Lemma 1 shows that the risk-aversion of a benchmarked investor, ρ̂i, exceeds the risk-

aversion of a non-benchmarked investor (equal to ρ) and is increasing in the strength of

his benchmarking concerns γi.
30 Intuitively, keeping γiW0,iRB fixed, a given proportional

movement in wealth Wi has a stronger impact on utility (14) if the wealth in excess of

the benchmarking component, Wi − γiW0,iRB, is low.31 Consequently, variations in the

fraction of benchmarked investors, Γ, imply changes in the aggregate risk-bearing capacity

in the economy; in particular, an increase in the fraction of benchmarked institutions leads

to a decline in the aggregate risk-bearing capacity.

Note that, for all graphical illustrations, we again assume that the strength of the

benchmarked investors’ benchmarking concerns coincide: γi = γ > 0, ∀i ∈ BI, while non-

benchmarked investors have no relative performance concerns: γi = 0, ∀i ∈ NI. As a

result, all variation in the degree of benchmarking in the economy is driven by changes in

the fraction of benchmarked investors, Γ.

30Risk-aversion is also increasing in the benchmark portfolio’s return; formally, ∂ρ̂i/∂RB > 0.
31In that regard, benchmarking concerns are akin to a subsistence level or background risk.
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3.2 Portfolio Choice

At time t = 2, an investor must choose his optimal portfolio in order to maximize (3),

conditional on his posterior beliefs, described by Fi, and taking the price P as given. For

illustrative purposes, one can derive the following approximate solution for the optimal

fraction of wealth invested into the stock, φi ≡ (θi P )/W0,i:
32

φi ≈
E2[re

∣∣Fi]
ρ

1−γi V ar2[re
∣∣Fi] + γi ≡ φMV

i + γi, (16)

where re denotes the stock’s excess return, re ≡ X/P −Rf .

The optimal demand for the stock has the same two components as in the case of

constant absolute risk-aversion. First, the mean-variance portfolio, φMV
i . But, note that

this is now the mean-variance portfolio of an investor with local risk-aversion ρ/(1−γi).33 As

a result, it is declining in the strength of an investor’s benchmarking concerns, γi. Second,

the hedging portfolio, γi, which is increasing in an investor’s benchmarking concerns, but

is information-insensitive. Naturally, for non-benchmarked investors (γi = 0), the demand

reduces to the standard mean-variance portfolio of an investor with risk-aversion ρ.

Figure 5 illustrates how the optimal stock demand of a benchmarked investor varies

with the strength of his benchmarking concerns, γi. In particular, Panel A shows that the

overall portfolio share of the stock, φi, is increasing in an investor’s benchmarking concerns

γi—comparable to the case of constant absolute risk-aversion. But, due to the decline in

the mean-variance portfolio, φMV
i , the overall increase is substantially smaller.

Panel B further illustrates that effect. It shows an investor’s optimal stock demand,

conditional on a specific signal realization Yi ∈ {YH , YL}. As expected, the investor, in

general, over-weights the stock following a high signal, YH , and vice versa for a low signal,

32The approximation relies on approximating (normalized) compensation, C̃i (see (B1) in Appendix B),
using a log-normally distributed variable. It is valid if

(
1/(1 − γi)

) (
W0,i

(
Rf + (φi − γi)E1[re] − κ(qi)

)
is

around one and, e.g., very accurate if the risk-free rate is below 5% and the expected excess return is below
10%. See also van Nieuwerburgh and Veldkamp (2010).

33This is consistent with Lemma 1. In particular, a benchmarked investor’s risk-aversion ρ̂i can be

rewritten as ρ /
(

1− γi W0,iRB−κ(qi)/γi
Wi

)
. In a one-stock economy and ignoring the (small) information cost,

κ(qi), the last part is given by (1 + re)/(Rf + φre), which, for realistic values of Rf (around 1.0) and φ
(around 1.0), is close to 1, such that ρ̂i reduces to ρ/(1− γi).
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(a) Expected Stock Demand
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(b) Conditional Stock Demand
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Figure 5: Stock demand. The figure illustrates a benchmarked investor’s portfolio choice for various levels
of the strength of his benchmark concerns, γi and conditional on a given signal precision qi. Panel A shows
the expected stock demand and the mean-variance portfolio component. Panel B depicts the stock demand
conditional on a specific signal realization Yi ∈ {YH , YL}. The graphs are based on the CRRA framework
described in Section 3.1, with the following parameter values: µX = 1.05, σ2

X = 0.25, µZ = ln(1) = 0,
σ2
Z = 0.2, ρ = 3, qi = 0.1667, and an information cost function κ(qi) = ω q2

i , with ω = 0.015.

YL. Most importantly, however, the “spread” between a benchmarked investor’s stock

demand following a positive and a negative signal narrows as his benchmarking concerns, γi,

strengthen. Hence, in the presence of benchmarking, the investor’s willingness to speculate

declines (due to his higher local risk-aversion). This result is in clear contrast to the case

of constant absolute risk-aversion (with or without a preference for the early resolution

of uncertainty), for which the mean-variance portfolio component is independent of the

strength of an investor’s benchmarking concerns.

3.3 Information Choice

To build the basic intuition for the incremental impact of the risk-taking effect on in-

formation choice in the clearest possible way, consider first the case of a single (small)

benchmarked investor. Hence, benchmarking does not affect the equilibrium stock price

or the effective supply. Recall from Remark 1, that, in this case, the strength of the in-

vestor’s individual benchmarking concerns, γi, does not affect his information choice with

mean-variance preferences.
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This result does not hold with CRRA preferences. In particular, Panel A of Figure

6 depicts the optimal signal precision qi of a single (small) benchmarked investor as a

function of the average private signal precision q̄—for different levels of the strength of his

benchmarking concerns, γi. As expected, the investor’s optimal signal precision is declining

in the average private signal precision. Most importantly, the optimal signal precision is

now also declining in the strength of the investor’s individual benchmarking concerns, γi.

Intuitively, the investor anticipates that his time-2 portfolio choice will be less sensitive to

the realization of his private signal because he trades less aggressively, and, consequently, the

value of private information declines. Panel B shows this even more explicitly by depicting

the optimal precision of the investor’s private signal, qi, as function of the strength of his

benchmarking concerns, γi.

Note that, because information-scale effects are also present with CRRA preferences,

varying the degree of benchmarking in the economy γ̄ (e.g., the fraction of benchmarked

investors), would also lead to a decline in the optimal signal precision—similar to the case

of mean-variance preferences (as is illustrated in Figure 2). However, the key new result is

that the investor’s individual benchmarking concerns γi now also play a role.

The lower value of information for benchmarked investors implies that, in equilibrium,

benchmarked institutions collect less information than non-benchmarked institutions—in

stark contrast to the earlier results (in which both groups of market participants chose the

same signal precision). This is illustrated in Panel A of Figure 7.

The figure also shows the novel result that both groups of investors choose a higher

precision for their private signals as the share of benchmarked investors, Γ, increases. To

understand this result, recall that an increase in the fraction of benchmarked investors

leads to a decline in the aggregate risk-bearing capacity. Consequently, prices reveal less

information which, in turn, increases the marginal benefit of private information and, hence,

the incentives of all investors to choose a more precise signal.

However, as shown in Panel B of Figure 7, price informativeness—the amount of pri-

vate information aggregated and revealed by the stock price—is declining in the fraction of

benchmarked investors. This result is driven by two distinct economic forces: information
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Figure 6: Information demand. The figure depicts the optimal signal precision qi of a single (small)
benchmarked investor. Panel A shows the optimal signal precision as a function of the average private signal
precision q̄—for different levels of the strength of his benchmark concerns, γi. Panel B shows the optimal
signal precision as function of the strength of the investor’s benchmark concerns, γi. The graphs are based on
the CRRA framework described in Section 3.1, with the following parameter values: µX = 1.05, σ2

X = 0.25,
µZ = ln(1) = 0, σ2

Z = 0.2, ρ = 3, and an information cost function κ(qi) = ω q2
i , with ω = 0.015.

acquisition and information aggregation. First, an increase in the share of benchmarked

investors implies that better-informed non-benchmarked investors are replaced by less-

informed benchmarked investors (as illustrated in Panel A). Second, it implies a shift toward

a group of investors that trades less aggressively based on available private information—

because of their lower risk appetite. Consequently, less information can be aggregated into

the price. Both effects imply a decline in price informativeness.

To (quantitatively) disentangle this effect from the information-scale effect, Panel B

of Figure 7 also shows how price informativeness varies with the fraction of benchmarked

investors, if one would keep the aggregate risk-bearing capacity fixed.34 While the majority

of the decline is due to the reduction in aggregate risk-bearing capacity, the impact of the

information-scale effect is non-negligible (about 25% of the decline for the parameters used

for the illustration).

34For that purpose, we reduce the curvature parameter of benchmarked investors’ utility, such that their
risk-aversion, after accounting for their benchmarking concerns, equals that of non-benchmarked investors.
In particular, we choose the curvature parameter such that a single benchmarked investor’s mean-variance
portfolio component matches that of a non-benchmarked investor.
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(b) Price Informativeness
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Figure 7: Equilibrium information choice. The figure illustrates equilibrium signal precisions, as
functions of the fraction of benchmarked investors in the economy, Γ. Panel A shows the optimal private
signal precision of the two groups of investors and Panel B depicts the precision of the public price signal
(“price informativeness”). Precision is measured as R2, that is, the fraction of the variance of the payoff
X that is explained by the investors’ private information and the stock price, respectively. The graphs are
based on the CRRA framework described in Section 3.1, with the following parameter values: µX = 1.05,
σ2
X = 0.25, µZ = ln(1) = 0, σ2

Z = 0.2, ρ = 3, γi = γ = 1/3 ∀i ∈ BI, and an information cost function
κ(qi) = ω q2

i , with ω = 0.015.

3.4 Unconditional Asset Prices and Return Moments

Similar to the case of mean-variance preferences, the unconditional stock price is affected

through two effects which are in conflict, such that the net effect depends on their relative

importance. On the one hand, the aggregate hedging demand pushes up the price. On the

other hand, the decline in price informativeness increases posterior uncertainty, and, hence,

risk-averse investors command a lower price.

Panel A of Figure 8 shows that, due to the amplification of the decline in price infor-

mativeness, the stock price can decline in the fraction of benchmarked investors. This is

the case if information acquisition costs are low (ωlow) and, hence, price informativeness

declines from a high initial level. This result is distinctly different from the setting with

mean-variance preferences in which—for realistic parameters values—the stock price always

increases in the fraction of benchmarked investors. As one increases information acquisition

costs, the stock price first becomes essentially flat (ωhigh) and in the limit approaches the
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(b) Return Volatility
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Figure 8: Equilibrium price and return volatility. The figure shows the unconditional expected
equilibrium stock price (Panel A) and the unconditional stock return volatility (Panel B), as functions of
the fraction of benchmarked investors in the economy, Γ. The graphs are based on the CRRA framework
described in Section 3.1, with the following parameter values: µX = 1.05, σ2

X = 0.25, µZ = ln(1) = 0,
σ2
Z = 0.2, ρ = 3, γi = γ = 1/3 ∀i ∈ BI and an information cost function κ(qi) = ω q2

i , with ωlow = 0.015,
and ωhigh = 0.045.

case without information choice in which the price is always increasing in the fraction of

benchmarked investors. The implications for the expected excess return are simply of the

opposite sign.

Similar to the case of mean-variance preferences, the stock’s return volatility is unam-

biguously increasing in the share of benchmarked investors because of the higher posterior

uncertainty. This is illustrated in Panel B of Figure 8. The effect is quantitatively stronger

for lower information acquisition costs and unique to our setting with endogenous informa-

tion choice (at least for static frameworks).

3.5 Portfolio Returns

In practice, institutional investors typically invest on behalf of their clients. Thus, the

differences in the institutional investors’ portfolio and information choices (resulting from

benchmarking) will also affect the clients’ expected returns.
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As shown in Panel A of Figure 9, the difference between the expected portfolio return of

non-benchmarked and benchmarked institutional investors is always positive. Hence, non-

benchmarked investors generate higher expected returns than their benchmarked peers.

Moreover, as the fraction of benchmarked investors increases, this “return gap” widens.

To understand this effect, recall that benchmarked investors always choose a lower pre-

cision of private information than non-benchmarked investors (see Panel A of Figure 7).

This has two effects for expected portfolio returns. First, non-benchmarked investors hold,

on average, more of the stock, because their superior information renders the investment

less risky. Due to the stock’s positive risk premium, this increases their expected portfolio

return. Second, conditional on a signal realization, non-benchmarked investors’ trades are

more profitable. Both effects unambiguously lead to a higher expected portfolio return for

non-benchmarked investors. As the fraction of benchmarked investors increases, price infor-

mativeness declines and less information is revealed through the public stock price. Thus,

the importance of private information rises. Consequently, the “information gap” between

investors’ information sets Fi widens (Panel B of Figure 9) and so does the “return gap.”

Note that these effects are not present for mean-variance preferences because in this case

the precision of private information of benchmarked and non-benchmarked institutional

investors coincides.

3.6 Robustness

The results are robust to changes in the parameter values. Intuitively, the increase in the

benchmarked investors’ risk-aversion, as discussed in Lemma 1, does not rely on specific

parameter values. Hence, information aggregation is always adversely affected. Moreover,

their higher local risk-aversion implies that benchmarked investors choose less precise pri-

vate information. Consequently, the difference in the expected portfolio returns between

benchmarked and non-benchmarked investors is positive and increases in the fraction of

benchmarked investors.

The only quantities for which the impact of benchmarking depends on the choice of

parameter values are, as discussed above, the unconditional expected stock price and excess
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(b) Information Gap
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Figure 9: Return and information gap. The figure illustrates the return and information gap between
the two groups of institutional investors, as functions of the fraction of benchmarked investors in the economy,
Γ. Panel A shows the difference between the expected portfolio return of non-benchmarked and benchmarked
institutions. Panel B shows the precision of investors’ information sets, Fi = {Yi, P}, measured as a fraction
of the variance of the payoff X that they can explain. The graphs are based on the CRRA framework
described in Section 3.1, with the following parameter values: µX = 1.05, σ2

X = 0.25, µZ = ln(1) = 0,
σ2
Z = 0.2, ρ = 3, γi = γ = 1/3 ∀i ∈ BI, and an information cost function κ(qi) = ω q2

i , with ω = 0.015.

return. In both cases, there are two economic forces that are in conflict, with the net effect

depending on their magnitudes.

4 Extensions

This section introduces two extensions of our basic economic framework. First, an extension

to multiple stocks and, second, an extension to asymmetric benchmarking concerns. In both

cases, we rely on CRRA preferences, capturing information-scale and risk-taking effects.

4.1 Multiple Stocks

Our objective in this section is to study how the results generalize in an economy with

multiple stocks. In particular, we consider an economy with two symmetric stocks, k ∈

{1, 2}, in which each investor has to decide simultaneously on the signal precision for the

two stocks, qi,k. Similar to the one-stock setup described in Section 3.1, the stocks’ payoffs,
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Xk, and the private signals, Yi,k, are assumed to be binomially distributed, and the supply

Zk is assumed to be log-normal. In addition, we assume that payoffs, signals, and supplies

are independent across assets.35 The first stock (the “index stock”) also serves as the

benchmark such that the compensation of the benchmarked investors is declining in its

(gross) return: γi,1 > 0,∀i ∈ BI. In contrast, the second stock (the “non-index stock”) is

not part of the benchmark: γi,2 = 0,∀i.

Panel A of Figure 10 illustrates that price informativeness is declining for both stocks

in the fraction of benchmarked investors, Γ. However, the decline in price informative-

ness is more pronounced for the index stock. Intuitively, the increase in the benchmarked

investors’ risk-aversion limits their speculative activities in the non-index stock as well.36

However, because of the absence of an information-insensitive aggregate hedging demand,

information-scale effects are absent. Hence, the expected number of shares of the non-index

stock in investors’ portfolios that are sensitive to private information does not decline. Con-

sequently, a piece of information can be applied to more shares, and, hence, the value of

private information and price informativeness are higher.

Panel B shows that the price of the index stock is always higher than that of the non-

index stock, with the price gap widening as the fraction of benchmarked investors increases.

Intuitively, the aggregate hedging demand for the index stock increases its price relative to

the non-index stock. At the same time, the stronger decline in price informativeness for

the index stock implies more of a discount. In equilibrium, the first effect is quantitatively

stronger, explaining the observed price pattern. The results for the stocks’ expected returns

follow accordingly. For both stocks, the unconditional return volatility is increasing because

price informativeness declines. However, due to the more pronounced decline in the index

stock’s price informativeness, the increase in its return volatility is stronger as well. Finally,

non-benchmarked investors’ private information in both assets is more precise, so that the

results regarding their superior expected portfolio return carry over.

35We focus on the case of stocks with symmetric distributions of independent fundamentals and noise, so
that all differences between the two stocks arise exclusively from benchmarking.

36Technically, conditional on a benchmarked investor’s posterior beliefs, his optimal demand for the index
stock is characterized by (16), with γi,1 > 0, ∀i ∈ BI. Moreover, his demand for the non-index stock is also
described by (16), but with γi,2 = 0.
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Figure 10: Multiple stocks. The figure shows price informativeness and the unconditional expected
stock price of the index and non-index stock, as functions of the fraction of benchmarked investors in the
economy, Γ. Panel A depicts the precision of the public price signal (“price informativeness”), measured
as the fraction of the variance (R2) of the payoff Xk that is explained by the corresponding stock price.
Panel B shows the unconditional expected equilibrium stock price. The graphs are based on the symmetric
two-stock CRRA framework described in Section 4.1, with the following parameter values: µX,k = 1.05,
σ2
X,k = 0.25, µZ,k = ln(1) = 0, σ2

Z,k = 0.2 for k ∈ {1, 2}, ρ = 3, γi,1 = γ = 1/3 ∀i ∈ BM, γi,2 = 0 ∀i, and an
information cost function κ(qi,k) = ω q2

i,k, k ∈ {1, 2}, with ω = 0.015.

4.2 Asymmetric Benchmarking Concerns

Second, we consider an extension to asymmetric benchmarking concerns. In particular,

while U.S. mutual funds are limited to use linear (Fulcrum) performance fees, asymmet-

ric performance fees for mutual funds can be used outside the United States and are also

much more standard in other asset classes (such as hedge funds or private equity). More-

over, implicit benchmarking concerns at the fund manager’s level or arising from the flow-

performance relation are typically also rather asymmetric.37

The easiest way to incorporate benchmarking concerns that are nonlinear in the bench-

mark’s return is to model a benchmarked investor’s compensation, Ci, as:

Ci(Wi, RB) = Wi −W0,iRB
(
γ+
i 1RB>1 + γ−i 1RB≤1

)
− κ(qi),

37See, e.g., Ibert, Kaniel, van Nieuwerburgh, and Vestman (2018) for empirical evidence on Swedish mutual
fund managers and Sirri and Tufano (1998), Chevalier and Ellison (1997) and Huang, Wei, and Yan (2007)
for evidence on an asymmetric flow-performance relation.
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Figure 11: Asymmetric benchmarking concerns. The figure illustrates a single (small) benchmarked
investor’s stock and information demand, as functions of the strength of his benchmarking concerns for
positive benchmark returns γ+

i . Panel A shows the stock demand conditional on a specific signal realization
Yi ∈ {YH , YL}, with exogenous signal precision qi = 0.1667. Panel B depicts the optimal, endogenous signal
precision qi. The graphs are based on the framework described in Section 4.2, with the following parameter
values: µX = 1.05, σ2

X = 0.25, µZ = ln(1) = 0, σ2
Z = 0.2, ρ = 3, γ−i = 0, and an information cost function

κ(qi) = ω q2
i , with ω = 0.015.

where 1· denotes the indicator function. In particular, with this specification, the sensitivity

of the investor’s compensation with respect to positive (gross) benchmark returns, γ+
i ,

can differ from the sensitivity with respect to negative (gross) benchmark returns, γ−i .38

Otherwise, the setup is similar to the one described in Section 3.1.

As a full analysis of the equilibrium with asymmetric benchmarking concerns is outside

the scope of this paper, we concentrate on the case of a single (small) benchmarked investor

with asymmetric benchmarking concerns; in which case benchmarking does not affect the

equilibrium stock price. In particular, consider the case of varying the strength of the

investor’s benchmarking concerns for positive benchmark returns, γ+
i , while setting the

strength of his benchmarking concerns for negative benchmark returns, γ−i , to zero.39

Panel A of Figure 11 shows the investor’s stock demand conditional on a specific signal

realization Yi ∈ {YH , YL}. Interestingly, the investor’s willingness to speculate, measured

38Technically, this introduces at kink at RB = 1, which further complicates the solution.
39The results are qualitatively unchanged if one varies the strength of the investor’s benchmarking concerns

for negative benchmark returns, γ−i , while setting the strength of his benchmarking concerns for positive
benchmark returns, γ+

i , to zero.
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by the “spread” between his stock demand following a high and a low signal, is declining

substantially less than in the case of symmetric benchmarking concerns (see Panel B of

Figure 5). On the one hand, when the investor observes a signal indicating a low payoff

and, hence, a negative benchmark return, the aggressiveness with which he trades is essen-

tially unaffected because γ−i = 0. On the other hand, when the investor observes a signal

indicating a high payoff and, hence, a positive benchmark return, the aggressiveness with

which he trades is only marginally affected relative to the no-benchmarking case (although

γ+
i > 0). Intuitively, because the investor over-weights the benchmark following a high

signal (i.e., the stock’s portfolio share is above 1), his expected final wealth, Wi, relative to

the benchmark component γ+
i RB, is high, limiting the increase in local risk-aversion (15).

Consequently, the sensitivity of the investor’s portfolio with respect to private informa-

tion declines only marginally as the strength of the investor’s benchmarking concerns for

positive benchmark returns, γ+
i , increases. Hence, as shown in Panel B of Figure 11, the

under-provision of private information seems to be considerably weaker than in the case

of symmetric benchmarking concerns. That is, the investor chooses a substantially higher

signal precision than in the linear case (see Panel B of Figure (6))—although the optimal

signal precision is still declining in the strength of his benchmarking concerns.

5 Key Predictions and Conclusion

Relative performance concerns play a key role in the decisions of institutional investors

who are in the business of acquiring information and using that information for portfolio

management. In this paper, we develop an economic framework that explicitly accounts for

benchmarking and investors’ joint portfolio and information choice.

We identify two distinct economic channels through which benchmarking affects infor-

mational efficiency. Key to both economic mechanisms is the interaction between investors’

portfolio and information choices. First, the information-insensitive aggregate hedging de-

mand of benchmarked investors reduces, in equilibrium, the expected number of shares in

investors’ portfolios that are sensitive to private information. This information-scale ef-
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fect reduces the value of private information but does not affect information aggregation.

Second, an investor’s individual benchmarking concerns limit his willingness to speculate,

so that the sensitivity of his portfolio with respect to private information declines. This

risk-taking effect leads to a decline in the value of private information but also adversely

affects information aggregation. Notably, incorporating risk-taking effects leads to quali-

tatively different implications. For example, benchmarked and non-benchmarked investors

differ in their information choice and, hence, in their expected portfolio returns. Moreover,

the equilibrium stock price can decline in the fraction of benchmarked investors.

The model generates a rich set of predictions, which are empirically refutable. For

example, similar to our results, the literature on “index effects” has found a higher price

and a lower Sharpe ratio for index stocks relative to non-index stocks. While these results

are not unique to our model (see, e.g., Cuoco and Kaniel (2011) and Basak and Pavlova

(2013)), the joint analysis of portfolio and information choices also leads to novel and

unique predictions. In particular, our model predicts a lower price informativeness for

index stocks. In line with this prediction, Israeli, Lee, and Sridharan (2017) document that

an increase in ETF ownership is associated with less-informative security prices. Also, our

model makes unique predictions about the expected portfolio returns of benchmarked and

non-benchmarked investors that would not arise in models with symmetric information and

can be confronted with the data.

In this paper, the benchmarking concerns of the institutional investors are exogenous.

However, in the presence of agency frictions, they might be an endogenous outcome; for

example, the incentives between institutional investors and their clients (see, e.g., Buffa,

Vayanos, and Woolley (2017) or Sotes-Paladino and Zapatero (2016)) as well as between

fund managers within an asset management firm (see, e.g., van Binsbergen, Brandt, and

Koijen (2008)) might be better aligned due to benchmarking. In this regard, our paper

highlights a novel tension between benchmarking as a tool to align incentives and its adverse

effects on managers’ information acquisition and, hence, their portfolio returns.
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Consequently, a logical extension of our work would be to study optimal asset man-

agement contracts in a setting with agency frictions and information acquisition.40 In

particular, allowing for nonlinear contracts might lead to many new insights regarding the

optimal compensation in the asset-management industry. Also, extensions of our framework

can be used to study the optimal size of benchmarked investors in the economy (Pástor and

Stambaugh (2012)) or the implications of passive investing.

40Intuitively, because monitoring information acquisition is difficult, fund managers have an incentive to
lie, which, naturally, creates an agency conflict.
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Appendix

A Proofs for Section 2

Proof of Theorem 1

Plugging wealth Wi into an investor’s compensation Ci = Wi − γi (X − PRf ) − κ(qi) and

substituting into the time-2 objective function E2 [Ci]− ρ/2V ar2 (Ci) yields:

E2 [W0,iRf + (θi − γi) (X − PRf )− κ(qi)]−
ρ

2
V ar2

(
(θi − γi) (X − PRf )

)
= W0,iRf − κ(qi) + (θi − γi) (µ̂X,i − PRf )− ρ

2
(θi − γi)2 1

hi
.

Hence, the first-order condition with respect to θi is given by:

(µ̂X,i − P Rf )− ρ (θi − γi)
1

hi
, 0,

which, after re-arranging, yields Theorem 1.

Proof of Theorem 2 and Corollary 1

We conjecture (and later verify) that the equilibrium stock price is a linear function of the

unobservable state variables, that is, the payoff and the aggregate stock supply:

PRf = a+ bX − dZ. (A1)

As a result, conditional on a specific signal Yi and the realized price PRf , investor i’s

posterior precision and mean are given by:

hi =
1

σ2
X

+
b2

d2 σ2
Z︸ ︷︷ ︸

≡h0

+qi =

(
1 + qi σ

2
X

)
d2 σ2

Z + b2 σ2
X

σ2
X d

2 σ2
Z

, (A2)

µ̂X,i = µX +
1

hi
qi (Yi − µX) +

1

hi

b2

d2 σ2
Z

(
P Rf − a+ dµZ

b
− µX

)
(A3)

=
d2 σ2

Z

(
qi σ

2
X Yi + µX

)
+ b

(
PRf − a+ dµZ

)
σ2
X

(1 + qi σ2
X) d2 σ2

Z + b2 σ2
X

,
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where we substituted the posterior precision hi with (A2) in the last step.

Intuitively, investors have three pieces of information that they aggregate to form their

expectation of the asset’s payoff: their prior beliefs, their private signals and the public stock

price. The posterior mean is simply the weighted average of the three signals’ realizations,

while the posterior precision is the weighted average of the signals’ precisions.

Plugging the posterior mean and precision into the optimal stock demand in (6) yields:

θi =
1

ρ

(
µx
σ2
X

+ qi Yi +
b (−a+ dµZ)

d2σ2
Z

− P Rf
(

1

σ2
X

+ qi +
b

d2σ2
Z

(b− 1)

))
+ γi. (A4)

Market clearing requires that aggregate demand, that is, demand (A4) integrated over

all investors, equals (random) supply:∫ Γ

0

[
1

ρ

(
µx
σ2
X

+ qi Yi +
b (−a+ dµZ)

d2σ2
Z

− P Rf
(

1

σ2
X

+ qi +
b

d2σ2
Z

(b− 1)

))
+ γi

]
di

+

∫ 1

Γ

[
1

ρ

(
µx
σ2
X

+ qi Yi +
b (−a+ dµZ)

d2σ2
Z

− P Rf
(

1

σ2
X

+ qi +
b

d2σ2
Z

(b− 1)

))]
di , Z.

Substituting the private signals by Yi = X + εi and using that investors are, on average,

unbiased (
∫ Λ

0 εi = 0,
∫ 1

Λ εi = 0), this can be simplified to:

1

ρ

(
µx
σ2
X

+ q̄ X +
b (−a+ dµZ)

d2σ2
Z

− P Rf
(

1

σ2
X

+ q̄ +
b (b− 1)

d2σ2
Z

))
+ γ̄ , Z, (A5)

with the precision of private information of the average agent, q̄, and the degree of bench-

marking in the economy, γ̄, being defined in (9).

Solving the market-clearing condition (A5) for the price PRf yields:

PRf =
d2σ2

Z

h̄ d2σ2
Z − b

(
µx
σ2
X

+ ρ γ̄ +
b (−a+ dµZ)

d2σ2
Z

)
+

q̄ d2σ2
Z

h̄ d2σ2
Z − b

X −
ρ d2σ2

Z

h̄ d2σ2
Z − b

Z,

with h̄ being defined in (8). Moreover, it implies a signal-to-noise ratio, defined as the ratio

of the price sensitivities with respect to the payoff and the noisy supply b/d, of −q̄/ρ.

Finally, matching the coefficients of this price function to the ones of the conjecture

(A1) and solving the resulting equation system for a, b and d yields the equilibrium price
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function (7) Finally, plugging these coefficients into h0 defined in (A2) yields its expression

in (8) and Corollary 1.

Proof of Theorem 3

Plugging the optimal portfolio θi in (6) into compensation Ci and computing its expectation

and variance, yields:

E2[Ci] = W0Rf + hi
(µ̂X,i − P Rf )2

ρ
− κ(qi) = Rf

(
W0 −

κ(qi)

Rf

)
+

1

ρ
z2
i , (A6)

V ar2(Ci) = h2
i

(
µ̂X,i − P Rf

ρ

)2 1

hi
= hi

(µ̂X,i − P Rf )2

ρ2
=

1

ρ2
z2
i , (A7)

with zi being defined as zi ≡
√
hi (µ̂X,i −P Rf ). Substituting the expectation and variance

into the investor’s utility function (5) gives the investor’s time-1 objective function (11).

To ease the computations of E1[z2
i ], introduce ui =

√
hizi = hi(µ̂X,i−P Rf ). Moreover,

note that viewed from period 1 both—µ̂X,i and PRf—are random variables. In particular,

substituting Yi by X + εi and
P Rf−a+dµZ

b by X − ρ
q̄ (Z − µZ) in the expression for the

posterior mean (A3) yields:

µ̂X,i =
1

hi

((
µX
σ2
X

+
µZ q̄

ρ σ2
Z

)
+ qi εi +

(
qi +

q̄2

ρ2 σ2
Z

)
X − q̄

ρ σ2
Z

Z

)
. (A8)

Consequently, after substituting (A8) for µ̂X,i and (7) for PRf in ui, one gets:

ui =

(
µX
σ2
X

+
q̄ µZ
ρ σ2

Z

) (
1− hi

h̄

)
− hi
h̄
ρ γ̄ + qi εi +

(
1

σ2
X

(
hi
h̄
− 1

))
X

+
ρ

q̄

(
hi −

q̄2

ρ2 σ2
Z

− hi
h̄ σ2

X

)
Z.

Integrating over the distributions of P and Yi, the time-1 expectation and variance are:

E1[ui] =
hi ρ

h̄
(µZ − γ̄) ,

V ar1(ui) =
h2
i

h̄2

(
1

σ2
X

+
ρ2

q̄2
σ2
Z

(
h̄− 1

σ2
X

)2
)
− hi =

h2
i

h̄2

(
h̄+ ρ2σ2

Z + q̄
)
− hi.
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Using that E1

[
u2
i

]
= V ar1(ui) + E1[ui]

2 (from the definition of variance), we get:

E1

[
u2
i

]
= h2

i

1

h̄2

(
ρ2
(
σ2
Z + (µZ − γ̄)2

)
+ h̄+ q̄

)
− hi = Ah2

i − hi.

Consequently, we get that E1

[
z2
i

]
= 1

hi
E1

[
u2
i

]
= A (h0 + qi) − 1, such that the time-1

objective function (11) is given by:

E1

[
E2[Ci]−

ρ

2
V ar2(Ci)

]
= Rf

(
W0 −

κ(qi)

Rf

)
+

1

2 ρ
(A (h0 + qi)− 1) . (A9)

Re-arranging the first-order condition of (A9) with respect to qi (taking q̄ and, hence, h̄

and A as given), yields Theorem 3. In particular, while the right-hand side of the equation

is constant, the left-hand is increasing in qi (because κ is convex), so that an unique interior

solution exists if 2κ′(0) < A/ρ. Otherwise, one arrives at a corner solution: qi = 0.

Finally, using the definition of A in (12), we get:

∂A

∂γ̄
= − 2 ρ2

h̄
(µZ − γ̄) < 0, if µZ − γ̄ > 0. (A10)

One can also show that the value of information is declining in average aggregate pre-

cision h̄:

∂A

∂h̄
= − 2

h̄3

(
ρ2
(
σ2
Z + µ2

Z

)
+ h̄+ q̄

)
+

1

h̄2
= − 1

h̄3︸︷︷︸
< 0

{
2
(
ρ2
(
σ2
Z + µ2

Z

)
+ q̄
)

+ h̄
}︸ ︷︷ ︸

> 0

< 0, (A11)

and, consequently, also declines in the average precision of private information q̄:

∂A

∂q̄
=
∂A

∂h̄

∂h̄

∂q̄
=
∂A

∂h̄︸︷︷︸
< 0

(
2 q̄

ρ2 σ2
Z

+ 1

)
< 0. (A12)

This result is reminiscent of the result on strategic substitutability in Grossman and Stiglitz

(1980).
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Proof of Theorem 4

In the information choice period, the objective of an investor with CARA expected utility

is given by:

E1 [−E2 [exp (−ρCi)]] = E1

[
− exp

(
E2 [−ρCi] +

1

2
V ar2 (−ρCi)

)]

= − exp

(
ρRf

(
κ(qi)

Rf
−W0

))
E1

[
exp

(
−1

2
z2
i

)]
, (A13)

where we used (A6) and (A7) for the mean and variance of compensation Ci.

To compute the expectation of the exponential of a squared normal variable (z2
i ), we

can use Brunnermeier (2001, page 64):

E1

[
exp

(
−1

2
z2
i

)]
=

∣∣∣∣1− 2V ar1(zi)

(
−1

2

)∣∣∣∣− 1
2

×

exp

(
1

2
(−E1[zi])

2

(
1− 2V ar1(zi)

(
−1

2

))−1

V ar1(zi)−
1

2
E1[zi]

2︸ ︷︷ ︸
= 1

2
E1[zi]2

(
V ar1(zi)

1+V ar1(zi)
−1

)
= 1

2
E1[zi]2

(
V ar1(zi)−1−V ar1(zi)

1+V ar1(zi)

)
)

=

(
(1 + V ar1(zi)) exp

(
E1[zi]

2

1 + V ar1(zi)

))− 1
2

.

One can further simplify the two components within the exponential function as follows:

1 + V ar1(zi) = 1 +
V ar1(ui)

hi
= hi

1

h̄2

(
h̄+ ρ2σ2

Z + q̄
)
≡ A1 hi,

E1[zi]
2

1 + V ar1(zi)
=

hi
hi + V ar1(ui)

1

hi
E1 [ui]

2 =
(
h̄+ ρ2σ2

Z + q̄
)−1

ρ2 (µZ − γ̄)2 ≡ A2.

Consequently, the CARA objective function (A13) can be written as:

max
qi

E1 [− exp (−ρCi)] = − exp

(
ρRf

(
κ(qi)

Rf
−W0

))
(A1 (h0 + qi) exp (A2))−

1
2 .

Note that neither A1 (q̄) nor A2 (q̄, γ̄) depend on qi. Hence, taking the first-order condition

with respect to qi and re-arranging yields Theorem 4.
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Proof of Theorem 5

In equilibrium, precision choices are mutual best response functions. In particular, each

investor’s information choice qi affects q̄ and q̄ affects qi through A. Therefore, the equilib-

rium value of the precision of the private signal of the average investor, q̄, is determined by

plugging qi from (12) into the definition (9) which yields (13).

To prove that the equilibrium is unique (within the class of linear equilibrium), it suffices

to show that q̄ is uniquely defined. Let Σ(q̄) = 1
q̄

∫ 1
0 qi(q̄) di ≥ 0. Then q̄ is defined as the

solution of Σ(q̄) = 1. Differentiating Σ(q̄) yields:

Σ′(q̄) =
−1

q̄2

∫ 1

0
qi(q̄) di︸ ︷︷ ︸

=− 1
q̄

Σ(q̄)< 0

+
1

q̄︸︷︷︸
>0

∫ 1

0

∂qi
∂q̄

di. (A14)

Differentiating (12) with respect to q̄ yields:

2κ′′(qi)
∂qi
∂q̄

=
1

ρ

∂A

∂q̄
⇔ ∂qi

∂q̄
=

1

ρ 2κ′′(qi)︸ ︷︷ ︸
> 0

∂A

∂q̄︸︷︷︸
< 0 (see (A12))

< 0,

where we used that κ is strictly convex. Consequently, Σ′(q̄) is negative and Σ(q̄) is de-

creasing over the real positive line. Together with Σ(0) = +∞ and Σ(∞) = 0, this implies

that Σ(q̄) “crosses” each real point once. Hence, there is a unique q̄ satisfying Σ(q̄) = 1

and, hence, (13).

Taking the derivative of (13) with respect to γ̄, yields:

dq̄

dγ̄
=

∫ 1

0

∂qi
∂γ̄

di. (A15)

Moreover, the derivative of the best information response (12) with respect to γ̄ is:

2
∂κ′

∂qi︸︷︷︸
=κ′′(qi)

∂qi
∂γ̄

dγ̄

dγ̄
=

1

ρ

(
∂A

∂γ̄

dγ̄

dγ̄
+
∂A

∂q̄

dq̄
¯̄qγ̄︸ ︷︷ ︸

dA
dγ̄

)
⇔ ∂qi

∂γ̄
=

1

2 ρ κ′′(qi)

(
∂A

∂γ̄

dγ̄

dγ̄
+
∂A

∂q̄

dq̄

q̄γ̄

)
.
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Substituting this expression into (A15) and simplifying, yields:

dq̄

dγ̄
=

∫ 1

0

1

2 ρ κ′′(qi)

(
∂A

∂γ̄

dγ̄

dγ̄
+
∂A

∂q̄

dq̄

q̄γ̄

)
di =

∫ 1

0

1

2 ρ κ′′(qi)
di︸ ︷︷ ︸

≡H

(
∂A

∂γ̄

dγ̄

dγ̄
+
∂A

∂q̄

dq̄

dγ̄

)

⇔
(

1− ∂A

∂q̄
H

)
dq̄

dγ̄
= H

∂A

∂γ̄
⇔ dq̄

dγ̄
=

(
1− ∂A

∂q̄
H

)−1

︸ ︷︷ ︸
> 0 because ∂A

∂q̄
<0 (see (A12))

H
∂A

∂γ̄︸︷︷︸
< 0 (see (A10))

< 0.

Proof of Theorem 6

Taking the time-1 expectation of the equilibrium price (7) yields:

S =
1

h̄

(
µX
σ2
X

+ ρ γ̄ +
µZ q̄

σ2
Z ρ

)
+

1

h̄

(
h̄− 1

σ2
X

)
µX −

1

h̄

(
q̄

ρ σ2
Z

+ ρ

)
µZ = µX −

1

h̄
ρ (µZ − γ̄).

Hence, the total derivative with respect to γ̄ is given by:

dS

dγ̄
=
∂S

∂γ̄

dγ̄

dγ̄
+
∂S

∂h̄

dh̄

dγ̄
= −1

h̄
ρ (−1)− −1

h̄2
ρ (µZ − γ̄)

dh̄

dγ̄
=

1

h̄
ρ +

1

h̄2
ρ (µZ − γ̄)

dh̄

dγ̄
.

Accordingly, the time-1 expectation of the excess return M ≡ E1[X −PRf ] is given by:

M = E1[X]− E1[PRf ] = µX −
(
µX −

1

h̄
ρ (µZ − γ̄)

)
=
ρ

h̄
(µZ − γ̄) , (A16)

and, thus, its total derivative with respect to γ̄ is:

dM

dγ̄
=
∂M

∂γ̄

dγ̄

dγ̄
+
∂M

∂h̄

dh̄

dγ̄
=
− ρ
h̄

+
−ρ
h̄2

(µZ − γ̄)
dh̄

dγ̄
.

Proof of Theorem 7

The unconditional variance V 2 is given by:

V 2 ≡ V ar1(X − PRf ) = E1

[
(X − PRf )2

]
− E1 [(X − PRf )]2 = A−M2,
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where we used the law of iterated expectations, to re-write the first part as:

E1

[
E2

[
(X − PRf )2

]]
= E1 [V ar2(X)]︸ ︷︷ ︸

=V ar2(X)= 1
hi

+E1

[(
µ̂X,i − PRf )2

)]︸ ︷︷ ︸
=E1[z2

i ] (1/hi)

=
1

hi
+

1

hi
(Ahi − 1) = A.

Accordingly, the unconditional variance is given by:

V 2 =
1

h̄2

(
ρ2
(
σ2
Z + µ2

Z

)
+ h̄+ q̄

)
− ρ2

h̄2
(µZ − γ̄)2 =

1

h̄2

(
ρ2σ2

Z + h̄+ q̄
)
,

which does not explicitly depend on γ̄, but implicitly (through q̄ in h̄):

dV 2

dγ̄
=
∂V 2

∂γ̄

dγ̄

dγ̄
+
∂V 2

∂h̄

dh̄

dγ̄
=
−1

h̄3

dh̄

dγ̄
.

B Proofs and Derivations for Section 3

Proof of Lemma 1

The first- and second-order derivatives of the CRRA-utility function (14) with respect to

wealth Wi are given by:

∂C1−ρ
i /(1− ρ)

∂Wi
= C−ρi ,

∂2C1−ρ
i /(1− ρ)

∂W 2
i

= −ρC−ρ−1
i .

As a result, the local coefficient of relative risk-aversion, denoted by ρ̂i, is given by:

ρ̂i =
(−Wi) (−ρ)C−ρ−1

i

C−ρi
= ρ

Wi

Ci
= ρ

Wi

Wi − γiW0,iRB − κ(qi)
,

which yields Lemma 1.
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Derivations for the Approximate Portfolio Holdings

Substituting wealth Wi = W0,i (Rf + φi r
e) into compensation Ci, we get:

Ci = W0,i(Rf + φir
e)− γiW0,iRB − κ(qi)

= (1− γi)
(

1

1− γi
W0,i

(
Rf + φir

e − γiRB
)
− κ(qi)

1− γi

)
︸ ︷︷ ︸

≡C̃i

. (B1)

Importantly, with CRRA preferences, maximizing utility over Ci is equivalent to maximizing

utility over C̃i because any multiplicative constant drops out of the optimization problem.

If the mean of C̃i is around 1, one can approximate C̃i using the following log-normal

distribution:

C̃i ≈ exp

(
−1 + E1[C̃i]−

1

2
V ar1(C̃i) +

√
V ar1(C̃i) ν

)
, ν ∼ N (0, 1).

Because of log-normality of the approximated C̃i, the time-2 portfolio choice problem with

CRRA preferences can then be written as:

max
φ1

1

1− ρ
exp

(
(1− ρ)

(
−1 + E1[C̃i]−

1

2
V ar1(C̃i)

)
+

1

2
(1− ρ)2 V ar1(C̃i)

)
⇔ max

φ1

E1[C̃i]−
ρ

2
V ar1(C̃i).

Computing the mean and variance of C̃i, taking the first-order condition with respect to φi

and re-arranging, yields (16).

Numerical Solution Approach

Before describing our novel numerical solution approach for solving rational expectations

equilibrium models, we first derive the investors’ first-order conditions associated with their

optimal portfolio and information choice—for the case of CRRA preferences and a single

risky stock. These conditions form the basis of the numerical approach.

In period 2—the portfolio choice period—an investor (with arbitrary benchmarking

concerns γi) chooses, conditional on his posterior beliefs, the fraction of wealth to be invested

into the stock market, φi, in order to maximize his expected time-2 utility in (3) with u2(x) =
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x1−ρ/(1 − ρ) subject to the “budget equation” Ci = W0,i(Rf + φi r
e) − γiW0,iRB − κ(qi).

Computing the derivative with respect to φi, yields the following first-order condition:

E2

[
C−ρi re

∣∣Yi, P ] = 0, (B2)

where re ≡ X/P −Rf denotes the stock’s excess return.

In period 1—the information choice period—each investor then chooses the precision of

his private signal, qi, in order to maximize his expected time-1 utility in (4) with u1(x) = x.

Computing the derivative with respect to qi, yields the following first-order condition:

E1

[
∂U2,i

∂qi

]
= 0. (B3)

Together with the market-clearing condition for the stock, the first-order condition

(B2)—for the different investors—characterizes the equilibrium in period 2. Importantly,

note that the stock price plays a dual role: (i) it clears the stock market, and (ii) it appears

in the information set used to compute each investor’s conditional expectation in (B2).

The key difficulty is that, in contrast to CARA-normal frameworks, the equilibrium price

function is nonlinear, and its specific functional form is unknown. As a result, one cannot

explicitly compute the investors’ posterior beliefs and, hence, no closed-form solution for

the equilibrium exists. Accordingly, the model has to be solved numerically.

Bernardo and Judd (2000) propose a numerical solution approach that relies on conjec-

turing (parameterizing) the equilibrium price function as well as investors’ demand functions

using Hermite polynomials. Using the projection method (see also Judd (1992)), the con-

ditional expectation in (B2) is then replaced with a finite number of integration conditions.

Consequently, the first-order condition (B2) but also the market-clearing condition will only

hold approximately (“ε-equilibrium”).

In this paper, we take a different approach. We discretize the state space of the econ-

omy which allows us to explicitly compute the investors’ posterior beliefs and to solve the

investors’ first-order conditions (B2) and the market-clearing condition exactly. Moreover,

the approach allows for arbitrary price and demand functions, that is, we do not parame-

terize (conjecture) these functions in any form. The disadvantage of the approach is that

one can only compute the equilibrium for points within the discretization space (though

one can make the space between gridpoints arbitrarily narrow or can rely on interpolation
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between grindpoints). For the setup described in Section 3.1 discretization is straightfor-

ward: Because of its binomial distribution, the payoff X can only take on two values: XL

or XH . Hence, we solely have to discretize the noisy supply Z, which we do by use of NZ

discretization points.

Conditional on investors’ information choices, the system of equations for each dis-

cretization point (Xo, Zn), o ∈ {L,H}, n ∈ {1, . . . , NZ} is then composed of five equations:

The first-order condition (B2) for each of the four “sub-groups” of investors (that is, for

benchmarked and non-benchmarked investors and in each case for the two possible realiza-

tions of the signal Yi ∈ {YL, YH}) plus one market-clearing condition. The five unknowns

are the stock price P (Xo, Zn) and the stock demand of each group of investors and for each

signal realization: φBIi (Xo, Zn, Yi) and φNIi (Xo, Zn, Yi); i ∈ {L,H}. For numerical conve-

nience, we also treat the aggregate demand for the stock as a variable and add its definition

to the equation system, thereby increasing the number of equations (and unknowns) to 6.

If the posterior probabilities characterizing the conditional expectations in the first-order

conditions (B2) were “exogenous” (e.g., a function of investors’ private signals only or given

by some prior beliefs), one could easily solve this equation system numerically. However, as

mentioned above, the key difficulty is that the investors’ posterior beliefs depend on the stock

price. The advantage of our discretization is that it allows us to compute the corresponding

posterior probabilities explicitly and exactly. In particular, note that, because each investor

is small, the equilibrium stock price is a function of the stock’s payoff and its supply only:

P (X,Z). Consequently, if the stock price function, conditional on a given value for the

payoff X, is invertible (which we numerically verify), each investor can back out the two

combinations of the payoff and the noisy supply, denoted by {(X̂L, ẐL), (X̂H , ẐH)}, which

are consistent with a given price P̂ (given information choices).41 Using the distribution of

the noisy supply, an investor can then compute the posterior probabilities for the payoff X.

Note that each “conjectured” supply Ẑj , j ∈ {L,H} is given by the aggregate demand

in the economy at price P̂—conditional on the payoff being X̂j . Hence, to arrive at Ẑj ,

one needs to solve the portfolio choice problem of all four sub-groups of investors at price

P̂ and then aggregate accordingly—with the likelihood of low and high signals depending

41To distinguish between the values of the payoff and the noisy supply at a given gridpoint (Xo, Zn),
o ∈ {L,H}, n ∈ {1, . . . , NZ}, and the two “conjectured” payoff-noise combinations {(X̂j , Ẑj)}, j ∈ {L,H}
used to compute the posterior beliefs, we denote the later ones by a “ˆ”. Similarly, to distinguish between
the equilibrium price P and an (arbitrary) price used to illustrate the learning, we denote the later by P̂ .
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Figure A1: Numerical solution approach. Panel A shows the equilibrium price as a function of the noisy
supply Z and the payoff X. Panel B shows an investor’s posterior probability π̂i as a function of the stock
price, P—for the two possible signal realizations Yi ∈ {YL, YH}. The graphs are based on the framework
described in Section 3.1, with the following parameter values: µX = 1.05, σ2

X = 0.25, µZ = ln(1) = 0,
σ2
Z = 0.2, ρ = 3 and an information cost function κ(qi) = ω q2

i , with ω = 0.015.

on X̂j . Treating the aggregate demand as an unknown again, this adds 4 + 1 equations for

each X̂j , j ∈ {L,H} to the system—in total 2× 5 = 10 equations.

Formally, given the pair {(X̂L, ẐL), (X̂H , ẐH)}, investor i’s posterior probability of the

unobservable payoff X being high, conditional on price P̂ and his private signal Yi is:42

π̂i = P(XH |Yi, P̂ ) =
fZ(ẐH)P(XH |Yi)∑
j fZ(Ẑj)P(Xj |Yi)

, j ∈ {L,H}; (B4)

where fZ(·) denotes the density function of the stochastic supply Z. The probabilities of

the payoff X conditional on the private signal only, P(Xo |Yi), can be computed using the

correlation between an investor’s signal and the payoff (implicit in the signal’s precision qi):

P(Xo |Ym) =


1
2 + 1

2

√
qi
qi+4 if o = m,

1
2 −

1
2

√
qi
qi+4 if o 6= m;

with o,m ∈ {L,H}. (B5)

42The posterior probability of the unobservable payoff X being low, P(XL |Yi, P̂ ), is simply given by 1−π̂i.
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Panel A of Figure A1 depicts the equilibrium price law for the setting discussed in Section

3 of the paper. As one can see, the equilibrium price law is highly nonlinear.43 Panel B of

Figure A1 illustrates an investor’s corresponding posterior beliefs. In particular, it shows

the posterior probability π̂i, defined in (B4), for different combinations of the equilibrium

stock price P , and the investor’s private signal Yi ∈ {YL, YH}. Intuitively, the posterior

probability of the unobservable payoff being high is increasing in the stock price and always

higher for the case in which the investor receives a high private signal.

Adding the 10 equations required for computing the posterior probabilities to the system

of equations composed of the 6 equations discussed above (4 ‘explicit’ first-order conditions,

one market clearing condition and one aggregate demand definition) yields a system of 16

equations for each discretization point (Xo, Zn). However, note that, at each discretization

point, many of the equations (and matching variables) are actually redundant. For example,

one solves, for each subgroup, the exact same first-order condition associated with the

optimal portfolio choice (B2) three times (once for the ‘explicit’ first-order condition, once

to compute the aggregate demand ẐL, and, similarly, once to compute ẐH). Moreover,

one of the aggregate demand definitions associated with computing the aggregate demand

for X̂L or X̂H is equivalent to the aggregate demand definition associated with the explicit

market-clearing condition for the discretization point Xo, o ∈ {L,H}. Taking this into

account allows us to reduce the system to 7 equations for each discretization point—4

first-order conditions (B2), 1 market-clearing condition and 2 aggregate demand definitions

(1 associated with the explicit market-clearing condition and 1 associated with the ‘off-

equilibrium’ aggregate demand used to compute the posterior probabilities).

In a setting with exogenous signal precisions, one would be able to solve this equation

systems separately for each discretization point. However, in the presence of endogenous

information choices, the problem has to be solved globally because the period-1 precision

choices qi, ∀i affect the investors’ period-2 posterior beliefs and portfolio choices which, in

turn, affect the investors’ information choices. That is, we arrive at a combined system for

all discretization points, with (NZ × 2)× 7 equations.

Finally, in order to evaluate the first-order conditions associated with the investors’

optimal information choice (B3), one needs to compute, for each discretization point, the

43Intuitively, the stock price is a decreasing function of the noisy supply and higher in the case of a high
underlying payoff (which increases the likelihood of high signals).
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partial derivatives of the investors’ time-2 value functions U2,i with respect to qi.
44 The

derivatives can be computed numerically by computing the investors’ time-2 value functions

U2,i also for qi + δ (with δ being small). Because investors are price takers (also in period

1), the equilibrium price and, hence, learning from the price are unaffected by the change

of precision to qi+ δ (technically, Ẑj , j ∈ {L,H} is unchanged). However, the probability of

the payoff conditional on the private signal, given in (B5), changes, it is based on qi+δ now.

In summary, for each discretization point, one needs to solve for the optimal portfolio (and,

hence, value function) of each of the four sub-groups using the “new” posterior probabilities

(based on qi + δ). Neither the market-clearing condition nor the equations associated with

the learning from the stock price are required. This results in additional (NZ × 2) × 4

equations.

Together with the two first-order conditions (B3) which characterize the two groups’

information choices, this yields an overall system of (NZ × 2) × (4 + 7) + 2 equations,

with the same number of unknowns. We solve this large-scale fixed-point problem using

Mathematica. In particular, we rely on FindRoot which uses a damped version of the

Newton-Raphson method together with finite difference approximations to compute the

Hessian. To facilitate the computations, we first solve the portfolio choice equation systems

(separately for each discretization point) in the absence of private information. The solution

of these systems are then used as a starting point for solving the same systems with a non-

zero but exogenous signal precision (again, separately for each discretization point) before

we use these systems’ solutions as a starting point for the full system of equations with

endogenous information choice.

We find that the solution of the full system is quite accurate for NZ = 25, that is,

further increasing the number of discretization points hardly changes the solution.45 For

that choice, the full system consists of 25× 22 + 2 = 552 equations which can be solved on

an Intel Core i7-980 workstation in about 3 minutes.

The numerical solution approach is quite flexible and can be used to address a far broader

range of noisy rational expectations equilibrium models. For example, it can easily handle

frictions, constraints or other preferences. Such variations would simply lead to a differ-

44Also, equation (B3) requires to compute the time-1 expectation over all realizations of X and Z. Nu-
merically, this expectation is replaced by the expectation over the discretization space. This can either be
done through interpolation or by ‘re-scaling’ the probabilities for the finite number of gridpoints (so that
they sum up to 1.0). Currently, we follow the second approach.

45Moreover, we have used our numerical approach to replicate the binomial setup with CARA preferences
that is solved in closed-form in Breon-Drish (2015).
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Figure A2: Equilibrium information choice with log-normal distributions. The figure illustrates
equilibrium signal precisions, as a function of the fraction of benchmarked investors in the economy, Γ.
Panel A shows the optimal signal precision of the two groups of investors and Panel B depicts the precision
of the public price signal (“price informativeness”). Precision is measured as R2, that is, the fraction of
the variance of the payoff X that is explained by the investors’ private information and the stock price,
respectively. The graphs are based on the CRRA framework described in Section 3.1, but with log-normally
distributed payoff and signals. The following parameter values are used: µX = 1.05, σ2

X = 0.25, µZ =
ln(1) = 0, σ2

Z = 0.2, ρ = 3, γi = γ = 1/3 ∀i ∈ BI, and an information cost function κ(qi) = ω q2
i , with

ω = 0.015.

ent set of first-order conditions (B2) (plus—potentially—additional equations/constraints).

Other than that, the algorithm would be unchanged. One can also extend the solution

approach to a dynamic setting, as is done in Breugem (2018).

C Lognormally Distributed Payoff and Signals

The binomial distributions for the asset’s payoff and the investors’ private signals, as de-

scribed in Section 3.1, are chosen for ease of exposition and numerical convenience only.

The results also hold for the case of a log-normally distributed payoff and log-normally

distributed signals.46

Figure A2 depicts the investors’ optimal signal precisions and the resulting price infor-

mativeness for that case. Similar to the case with binomially distributed payoff and signals,

the non-benchmarked investors endogenously chose a higher signal precision than the bench-

46In that case, one has to discretize the payoff space, e.g., by NX gridpoints, which increases the overall
number of discretization points to NX ×NZ . Moreover, one also has to discretize the private signals, e.g.,
by NY gridpoints, which yields 2×NY first-order conditions (B2)—one for each signal realization and group
of investors.
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marked investors. Moreover, price informativeness declines as the fraction of benchmarked

investors increases. The results for the other quantities (omitted for brevity) are directly

comparable to the setting with binomial distributions as well.
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