
Online Appendix: Omitted Proofs (Not for Publication)

Appendix A: Proof of Proposition 1 and Theorem 2.1

A.1. Proof of Proposition 1 (Remaining Details)

In the proof, Lemma 3 only covers the special case in which cost and value functions are

step functions with two steps only. This appendix covers the general case in which no such

assumption is made. The proof is in two steps. First, an induction on the number of steps is

made to generalize Lemma 3 to an arbitrary number of steps. Second, a limiting argument is

used to establish the result for arbitrary (not necessarily step) functions c and v.

Lemma 6 If c and v are step functions, and (x, p) is an allocation that is implementable in the

full commitment program, and such that, for all t ∈ T ,

B(t) =

∫ 1

t

(x(s)(v(s)− p(s))ds ≥ 0,

then (x, p) is also implementable in the veto-incentive compatible program.

Proof. Since c and v are step functions, we may equivalently describe the environment as

finite: there are N types, with cost and values

c1 ≤ c2 ≤ · · · ≤ cN , and v1 ≤ v2 ≤ · · · ≤ vN .

To avoid some trivial but distracting complications, we shall assume that the inequalities in-

volving costs are strict: ∀i < n, ci < ci+1. The probability of each type (i.e., the length of

each step) is denoted qi.
23 An allocation, then, reduces to a pair of vectors x = (x1, . . . , xN),

23More precisely, the number of types N is the number of types ti ∈ T for which either c or v (or both) has a
discontinuity. The length of the interval refers to the intervals defined by the corresponding partition of T .
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p = (p1, . . . , pN).

The hypothesis that B(t) ≥ 0 for all t ∈ T implies that, for all J = 1, . . . , N ,

N∑
i=J

xiqivi ≥
N∑
i=J

xiqipi. (13)

We shall show that any incentive-compatible, individually rational allocation satisfying this con-

dition can be implemented in the veto-incentive compatible program, using N prices. The proof

is by induction on the number of types (uniformly over all cost, values and probabilities).

Note that this is true for N = 1. In that case, the buyer’s individual rationality constraint

implies p1 ≤ v1 (which trivially implies our hypothesis), while the seller’s individual rationality

constraint implies p1 ≥ c1. Note then that any such allocation (x1, p1) with p1 ∈ [c1, v1] satisfies

the veto-incentive compatibility constraint: conditional on p1, the buyer assigns probability one

to the (unique) type 1, and since v1 ≥ p1, his payoff conditional on this event is positive.

Assume then that, whenever there are N types, and for any collection of costs, values and

probabilities {(c1, v1, q1), . . . , (cN , vN , qN)}, any incentive compatible, individually rational allo-

cation {(x1, p1), . . . , (xN , pN)} that satisfies (13) can be implemented in the veto-incentive com-

patible program with N (not necessarily distinct) prices. Consider the case of N +1 types, with

cost, values and probabilities {ci, vi, qi}
N+1
i=1 . Fix some incentive compatible, individually rational

allocation

{(x1, p1), . . . , (xN+1, pN+1)} ,

satisfying (13). The argument is divided into three steps.
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Step 1. Note that, by (13) with J = N + 1, pN+1 ≤ vN+1. Also, incentive compatibility

implies that pN ≤ pN+1.
24 It follows that there exists z ∈ [0, xN+1/xN ] such that

zxNpN + (xN+1 − zxN ) vN+1 = xN+1pN+1. (14)

To see this, note that, for z = 0, the left-hand side reduces to xN+1vN+1, which is at least as

large as the right-hand side, while for z = xN+1/xN , the left-hand side reduces to xN+1pN , which

is at most as large as the right-hand side. Fix some z satisfying (28).

Step 2. Consider the game in which there are N types, with costs and values {ĉi, v̂i, q̂i}
N
i=1,

defined as follows. Costs are unchanged: ĉi := ci, all i = 1, . . . , N . Values are given by

v̂i := vi for i < N, and v̂N :=
qNvN + qN+1zvN+1

qN + qN+1z
,

(note that v̂N ≥ vN > ĉN), while probabilities are

q̂i :=
qi∑

j≤N qj + qN+1z
for i < N, and q̂N :=

qN + qN+1z∑
i≤N qi + qN+1z

.

We claim that the allocation {(xi, pi)}
N

i=1 (derived from {(xi, pi)}
N+1
i=1 ) is implementable, in this

new environment, in the veto-incentive compatible program.

First, because costs are the same in this environment as in the original environment, individual

rationality and incentive compatibility for all seller’s types is implied by the fact that these were

satisfied by the allocation {(xi, pi)}
N+1
i=1 in the original environment.

24The argument is standard: considering the two incentive compatibility conditions involving types N and
N + 1 only, it follows that xN ≥ xN+1 and pN ≤ pN+1.
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Therefore, to show that this allocation is implementable in the veto-incentive compatible

program, given the induction hypothesis, it suffices to show that, for all J ≤ N ,

N∑
i=J

xiq̂iv̂i ≥
N∑
i=J

xiq̂ipi.

(Note that individual rationality for the buyer is the special case J = 1.) Simplifying,

N∑
i=J

xiq̂i (v̂i − pi) =
1∑

i≤N qi + qN+1z

[ ∑N−1
i=J xiqi (vi − pi) + qNxN (vN − pN) + qN+1xNz (vN+1 − pN)

]
.

Adding and subtracting (xN+1 − xNz) vN+1 to the expression inside the square brackets yield

N∑
i=J

xiq̂i (v̂i − pi) =
1∑

i≤N qi + qN+1z

⎡
⎢⎣

∑N−1
i=J xiqi (vi − pi) + qNxN (vN − pN) +

qN+1 (xN+1vN+1 − xNzpN − (xN+1 − xNz) vN+1)

⎤
⎥⎦ .

Using the definition of z, we finally obtain

N∑
i=J

xiq̂i (v̂i − pi) =
1∑

i≤N qi + qN+1z

[
N+1∑
i=J

xiqi (vi − pi)

]
≥ 0,

where the last inequality uses that, by assumption, the allocation satisfies (13).

Therefore, by the induction hypothesis, the allocation {(xi, pi)}
N
i=1 is implementable in the

veto-incentive compatible program, in this new environment, with N prices. Let {r̂1, . . . , r̂N}

be the prices that implement this allocation in the veto-incentive compatible program, and

{x̂1 (r) , . . . , x̂N (r)}r∈{r̂1,...,r̂N} be the probabilities assigned to these prices.

Step 3. We now construct a set of prices {r1, . . . , rN+1} and probabilities {x1 (r) , . . . , xN+1 (r)},

r ∈ {r1, . . . , rN+1}, that implement {(x1, p1), . . . , (xN+1, pN+1)} in the veto-incentive compatible

program, in the original environment.
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The prices are given by

{r1, . . . , rN+1} = {r̂1, . . . , r̂N} ∪ {vN+1} .

The probabilities are given by, for i < N + 1,

xi (r) = x̂i (r) , ∀r ∈ {r̂1, . . . , r̂N} , and xi (vN+1) = 0,

and

xN+1 (r) = zx̂N (r) ∀r ∈ {r̂1, . . . , r̂N} , and xN+1 (vN+1) = xN+1 − zxN .

It is immediate to see that, conditional on any given r ∈ {r̂1, . . . , r̂N}, the conditional value is the

same as in the modified environment, so that the buyer’s veto-incentive compatibility constraint

holds. This is also true if r = vN+1, because the only seller’s type trading at this price is type

N +1. Furthermore, by construction, buyer i trades with probability xi and receives an average

price pi. This completes the proof.

Finally, we can show sufficiency for arbitrary cost and value functions.

Lemma 7 If (x, p) is an individually rational and incentive compatible allocation such that, for

all t ∈ T ,

B(t) =

∫ 1

t

x(s)[v(s)− p(s)]ds ≥ 0,

then (x, p) is implementable in the veto-incentive compatible program.

Proof. Fix an allocation (x, p) that satisfies the assumptions of the lemma. Consider a

sequence of partitions Pn = {tn1 , . . . , t
n
n}, with tn1 = 0, tnn = 1, maxi |t

n
i − tni+1| < K/n for some

constant K independent of n, and such that D ⊆ Pn, where D is the set of discontinuities of

either v or c (without loss of generality, assume that n is large enough to include this finite set).
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We now define a sequence of functions cn, vn : T → R+ as follows: for all t < 1, set cn(t) :=

c(tnj ) for t ∈
[
tnj , t

n
j+1

)
, cn(1) := c(tnn−1), as well as, for all t < 1, vn(t) := v(tnj+1) for t ∈

[
tnj , t

n
j+1

)
,

vn(1) := v(tnn).

Further, define the sequence of allocations xn, pn as follows: for all t ∈ T , set xn(t) := x(tnj ),

and pn(t) := p(tnj ) for t ∈
[
tnj , t

n
j+1

)
, j < n− 1 (t ∈

[
tnj , t

n
j+1

]
if j = n.)25

Note that the allocation (xn, pn) is incentive compatible and individually rational for the

seller given the functions (cn, vn) (because the choices of the types in the set Pn are incentive

compatible and individually rational given the original allocation (x, p)). Define

Bn
j :=

∫ 1

tn
j

xn(s)[vn(s)− pn(s)]ds.

Because x(tnj+1) ≤ x(t) ≤ x(tnj ) and p(tnj+1) ≤ p(t) ≤ p(tnj ) (by incentive compatibility) for

t ∈ [tnj , t
n
j +1), j < i−1, we can pick these sequences such that, because B(tnj ) ≥ 0 (the lemma’s

hypothesis), it is also the case that also Bn
j ≥ 0 for all j (clearly, Bn

n = 0). Therefore, the

allocation (xn, pn) is individually rational for the buyer given (cn, vn) and further, given Lemma

7, this allocation is veto-incentive compatible in the game with cost and value functions (cn, vn).

Let μn denote the corresponding mechanism. The mechanism μn defines a function xn specifying

the probability of trade given some message t, and a joint distribution μ̃n on T × R+ in case

that there is a trade for each type.26 Let μ̂n denote the product distribution whose marginals

coincide with those of μ̃n. Note that incentive compatibility and veto-incentive compatibility are

restrictions on the marginal distributions only, so that any mechanism inducing the pair xn and

μ̂n also implements (xn, pn). Note that, by construction, (xn, pn) converge (pointwise) to (x, p),

and similarly, (cn, vn) converge pointwise to (c, v). Also, since we can replace the set of prices

R+ by the compact interval [0, v(1)] (because v(1) is an upper bound on the price that can be in

25Note that the functions vn, cn as well as the allocations xn, pn are right-continuous.
26More precisely, x = μ(·) [1,R+], as defined in Section 2, and the distribution μ̃ is the joint distribution

ν((1, ·), ·), where ν is the conditional distribution defined in Section 2 as well.
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the support of any mechanism that is veto-incentive compatible), a subsequence of the sequence

{μ̂n} (without loss of generality the sequence itself) must converge weakly to some distribution

μ̂. It follows from Theorem 3.2 of Billinsgley (1968) that μ̂ must itself be a product distribution,

and that the marginals of μ̂n converge weakly to the marginals of μ̂. Therefore, for all prices p,

the marginal distribution μ̂n(· | p) converges weakly to μ̂(· | p), and so it follows that, for all p,

∫
T

μ̂(t | p)(v(t)− p)dt ≥ 0,

which is precisely the requirement of veto-incentive compatibility. Therefore, along with x, μ̂ de-

fines a veto-incentive compatible mechanism. (Incentive compatibility and individual rationality

are satisfied by hypothesis, given the limiting allocation (x, p).)

Note that Lemma 2 and 7 immediately imply Proposition 1.

A.2. Proof of Theorem 2.1

Here, we prove the three claims stated in Section 4.1.2. Assume that v > c. (Simple changes

have to be made otherwise.) Given (x, p), let t̄ := sup{t ∈ T : x(t) > 0}.27

Clearly, (0, 0) is an extreme point of this set, and because it is achieved by the allocation

(x, p) = (0, 0), the claims are trivially valid for this point. We further divide this boundary into

ΠV
− := {(πS, πB) ∈ R

2 : πB = max(π1,π2)∈ΠV π2 s.t. π1 ≤ πS} and ΠV
+ := {(πS, πB) ∈ R

2 : πB =

max(π1,π2)∈ΠV π2 s.t. π1 ≥ πS}. As will be clear, ΠV
+ intersects the axis {(πS, 0) : πS ∈ R}, so

that ΠV = co {(0, 0)} ∪ ΠV
+ ∪ΠV

−, where, given any set A, co A denotes the convex hull of A.

Let us establish three claims for ΠV
+ ∪ΠV

− at once. If (x, p) achieves π ∈ ΠV
+ ∪ ΠV

−, then

1. lims↓t π
S(s | t) = πS(t) for all t. Suppose that this is not the case. First, consider the case

in which the payoff is in ΠV
+. Take the supremum over t̂ such that πS

(
t̂
)
> lims↓t π

S
(
s | t̂

)
.

Clearly, t̂ is a point of discontinuity of c (t) and x (t). Consider then the following alternative

27Not to be confused with t̄ as defined in (9).
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allocation (x′, p′), defined by

x′ (t) = x (t) + ε if t ∈ [t̂, t̂+ ε), x′ (t) = x (t) otherwise;

p̄′ (t) = p̄ (t) + εc (t + ε) if t ∈ [t̂, t̂+ ε), p̄′ (t) = p̄ (t) otherwise.

It is straightforward to see that, for small enough ε > 0, this is incentive-compatible,

satisfies B (t) ≥ 0 for all t and strictly improves the buyer’s payoff, while weakly improving

the seller’s payoff. Consider next the case in which the payoff of (x, p) belongs to ΠV
−. Take

the supremum over t̂ such that π
(
t̂
)
> lims↓t π

(
s | t̂

)
. Clearly, t̂ is a point of discontinuity

of c (t). Thus consider the alternative allocation (x′, p′), defined by

x′ (t) = x (t) for all t ∈ [0, 1] ,

p̄′ (t) = p̄ (t)− ε if t ∈ [0, t̂); p̄′ (t) = p̄ (t) otherwise.

It is straightforward to check that for small ε > 0 this allocation is implementable. More-

over, it decreases the seller’s payoff and increases the buyer’s payoff, which contradicts the

assumption that the payoff is in ΠV
−.

2. πS(t̄−) = 0, where t̄ := sup{t ≤ 1 : x(t) > 0} is the highest seller’s type that trades with

positive probability. Suppose towards a contradiction that this is not the case. Consider

first the case in which the payoff is in ΠV
−. Modify the allocation by decreasing p(t) (for all

t such that x(t) > 0) by some small ε > 0, contradicting that π ∈ ΠV
−. Suppose next that

π ∈ ΠV
+. Fix some small η > 0 and let t∗ := sup {t : x (t)− x (t̄−) > η}. Since the allocation

is right-continuous, x (t∗) ≤ x (t̄−) + η. Thus, define p̂ such that x (t∗) (p (t∗)− c (t∗)) =

[x (t̄−) + η] (p̂− c (t∗)), and consider the alternative allocation

x̂ (t) = x (t̄) + η if t ∈ [t∗, t̄), x̂ (t) = x (t) otherwise;

p̂ (t) = p̂ if if t ∈ [t∗, t̄), p̂ (t) = p (t) otherwise.

The payoff of each seller’s type weakly decreases in this alternative allocation, while the
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buyer’s payoff strictly increases (since c is piecewise continuous and v(t) > c(t) the allo-

cation remains implementable for small η). If the seller’s payoff remains constant, we are

done, so assume it decreases by α > 0. There exists ε > 0 such that
∫ t̄

0
εdt = α. Thus,

increase all prices by ε, so that the seller’s overall payoff does not change.28 This is incen-

tive compatible and increases the buyer’s payoff. Thus, since the surplus increase goes to

the buyer, it is enough to show that B (t) ≥ 0, all t. Note that the buyer’s ex ante payoff

changes by

ΔB (0) =

∫ t̄

0

(Δx (t) (v (t)− c (t))) dt−

∫ t̄

0

(Δp̄ (t)−Δx (t) c (t)) dt

=

∫ t̄

0

(Δx (t) (v (t)− c (t))) dt > 0,

where Δx (t) := x′ (t)− x (t̄) and Δp̄ (t) := p̄′ (t)− p̄ (t). Furthermore,

Δx (t) (v (t)− c (t)) + (Δp̄ (t)−Δx (t) c (t)) < 0,

if and only if t < t∗∗ ∈ [t∗, t̄). Thus ΔB (t) ≥ 0 for all t, which completes the argument.

3. x(0) = 1. Suppose towards a contradiction that x (0) < 1. Since the cost function is

piecewise right-continuous and piecewise C1 we take an interval [0, η] such that (c, v) are

differentiable on that interval. Fix n′ ∈ N such that 1/n′ < η, and consider the following

alternative allocation (xn, p̄n) defined as

xn (t) := x (t) + (1− x (0)) if t ∈ [0, 1
n
), xn (t) = x (t) otherwise;

p̄n (t) := p̄ (t) + c
(
1
n

)
(1− x (0)) if t ∈ [0, η), p̄ (t) = p̄ (t) otherwise.

Notice that there exists m > n′ such that this allocation is implementable (and is also a

Pareto improvement for all n > m). If π ∈ ΠV
+, this is a contradiction. If instead π ∈ ΠV

−

such that πS > 0, let k > 0 be the supremum of the subgradients of the payoff set at π. Now

28Notice that the seller’s types [t∗, t̄) are made worse off, while seller’s types [0, t∗) are made better off. Hence,
the allocation (0, 0) is still optimal for types in [t̄, 1) when t̄ < 1.
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notice that for each n the payoff of the buyer increases by (1− x (0))
∫ 1

n

0
(v (s)− c(1/n)) ds,

while the payoff of the seller increases by (1− x (0))
∫ 1

n

0
(c (s)− c(1/n)) ds. Thus the ratio

of the increase in the payoff of the buyer and the seller is arbitrarily large as n→∞, and

for n large enough, both payoffs can be increased at a rate greater than k, a contradiction.

If π ∈ ΠV
− and πs = 0, then either (i) c is constant in a neighborhood of 0, or (ii) c(t) > c(0)

for all t > 0. If (i) holds, then one can readily see that for some small n the alternative

allocation above increases the buyer’s payoff while keeping the seller’s payoff constant. If

(ii) holds, then since c is right-continuous we have πB = 0 and the claim is trivially true.

Appendix B: Proof of Lemma 5 (and finite horizon)

As mentioned, we restrict ourselves to the case of extreme points that lie on the Pareto-

frontier here. Considering points on the “north-west” and “south-west” of the relevant payoff

set require relatively straightforward modifications.

Lemma 8 Every extreme point (πS, πB) of the payoff set that can be achieved by veto-incentive

compatible allocations (x, p) ∈ ΠV
+ for which πS(0) > v(0)− c(0) can be approached by a regular

allocation.

Proof. Consider an allocation (x, p) satisfying the assumptions of the lemma. This allocation

maximizes the weighted sum of the buyer and the seller payoff. For future reference, let β ∈ (0, 1)

be the seller’s weight. Taking a sufficiently close allocation if necessary, assume that πS(0) ≥

v(0)− c(0) (implicitly we assume that v(0) < v(1−)).
29

Define t̂ := sup{t : x(t) > 0}. It is straightforward to construct an allocation (x′, p′) such

that: a) t̂ := sup{t : x′(t) > 0}; b) x′(t−) > 0; c) p′ 
 v. Since the convex combination of feasible

allocations is also a feasible allocation, take λ ∈ (0, 1) and define (xλ, pλ) := λ(x, p)+(1−λ)(x′, p′)

29Otherwise the equilibrium outcome of the bargaining game is unique and involves the seller selling the good
at v(0) in the first period with probability 1.
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satisfying ‖(xλ, pλ)− (x, p)‖ < ε
2
and πS

λ(0) > v(0)− c(0). Notice that for the allocation (xλ, pλ)

we have Bλ(0) > 0 for all t < t̂. Furthermore, notice that since (xλ, pλ) and (c, v) are right-

continuous the assumptions a) and b) imply that there exists t2 < t̂ such that pλ(s) < v(t2) for

all t ∈ (t2, t̂). Therefore:

Bλ (t2) =

∫ t̂

t2

xλ (s) (v(s)− pλ (s)) ds =: ϑ > 0.

Next, we approach the allocation (xλ, pλ) with a step allocation.

- Step 1: For every n ∈ Nwe consider a mesh of [0, t̂),
{
In
j

}Mn

j=1
:=
{
[tn1,1, t

n
2,1), . . . , [t

n
1,Mn

, tn2,Mn
)
}

such that

i)
∑
j

max
∣∣∣supt∈Inj

xn (t)− inft′∈Inj xn (t
′)
∣∣∣ < ( 1n) ;

ii) xn (t) = xn (t
′) for all t ∈ In

j and xn

(
tn2,j−

)
= xλ

(
tn2,j−

)
for every tn2,j ;

iii) pn (t) = pn (t
′) for all t ∈ In

j ; pn
(
tn2,Mn−

)
= p

(
tn2,Mn−

)
and for all j < Mn we define

pn
(
tn2,j−

)
by

pn
(
tn2,j−

) (
xn

(
tn2,j−

)
− c

(
tn2,j−

))
= pn

(
tn2,j+1−

) (
xn

(
tn2,j+1−

)
− c

(
tn2,j−

))
;

iv) All discontinuity points of c belong to the boundaries of the partition.

Notice that for every t we have

p̄n(t) = xn(t)c(t) +

∫ 1

t

xn(s)dc(s).
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Notice that by construction xn (t)→ x (t) uniformly. Furthermore,

|p̄n(t)− p̄ (t)|

≤ |xn(t)c(t)− x(t)c(t)| +

∫ 1

t

|xn(s)− x(t)| dc(s).

Hence, using iv) we conclude that p̄n (t) → p̄ (t) uniformly. Furthermore, there exists n1

such that n > n1 implies Bn (t1) ≥
ϑ
2
. Hence, the uniform convergence of p̄n and xn (t)

guarantees that there exists n2 > n1 such that ‖(xn, pn)− (xλ, pλ)‖ <
ε
2
and Bn (t) > 0 for

all t < t̂.

Step 2: Notice that the allocation (xn, pn) is a step function allocation; hence there is a

finite partition of the types
{
[tn1,1, t

n
2,1), . . . , [t

n
1,Mn

, tn2,Mn
)
}
such that all types t ∈ [tn1,j , t

n
2,j)

trade with the same probability. Hence, consider a fictitious game with finite types in

which all types t ∈ [tn1,j , t
n
2,j) have the same cost c(tn2,j−), the same value

( ∫
[tn
1,j

,tn
2,j

)
v(s)ds

tn2,j−t
n
1,j

)
and trade with the same probability. Furthermore, if tn2,j < 1, attribute the cost c(1) and

the value

( ∫
[tn
2,j

,1) v(s)ds

1−tn2,j

)
to all types t ∈ [tn2,j , 1). In this finite game, consider the allocation

that maximizes the weighted sum of the buyer’s payoff and the seller’s payoff (with weight

β on the seller) such that all types t ∈ [tn1,j, t
n
2,j), j ≤ Mn and all types t ∈ [tn2,j, 1) trade

with the same probability. This is a finite dimensional compact problem. Hence, it admits

a solution. Since (xn, pn) is feasible, the solution leads to a weakly higher value for the

objective function. It is straightforward to show that any solution to this problem is a

regular allocation and, from Theorem 2.1, we know that all downward constraints are

binding and the last type of the seller who trades with positive probability obtains zero

payoff. This completes the proof.
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Finite Horizon

We show below how to implement regular allocations (see Definition 1) when the horizon N

(N ≥ 2) is finite and the players do not discount the future.

- All types make non-serious offers (e.g., pn = v(1) + 1) in every period n < N − 1.

- Types t ∈ [0, t1] offer p1 at period N − 1 which is accepted with probability 1.

- For j = 1, . . . , K − 3, seller’s types t ∈ [tj , tj+1] make a non-serious offer at period N − 1

and offer pj+1 at period N . The buyer accepts this offer with probability xj+1. Notice that

it is rational for the buyer to randomize since the buyer breaks even by accepting any such

offer (because B(t1) = · · · = B(tK−2) = 0).

- Types t ∈ [tK−2, tK ] offer v
tK
tK−2

at periodN−1. The buyer accepts this offer with probability

xK−1β (recall that β is defined in (11)). If this offer is rejected, all types t ∈ [tK−2, tK−1]

offer v
tK−1

tK−2
at period N, while all types t ∈ [tK−1, tK ] offer v

tK
tK−1

at period N. The offer v
tK−1

tK−2

is accepted with probability ςK−1, which is defined by xK−1 = xK−1β + (1− xK−1β)ςK−1,

while the offer vtKtK−1
is accepted with probability ςK , which is defined by xK = xK−1β +

(1 − xK−1β)ςK . Again, it is rational for the buyer to randomize since he breaks even by

accepting any of the offers above.

It is easy to see that the buyer has no profitable deviation. For the seller, we assume that

the buyer puts probability 1 on the seller being type t = 0 (and never revises his belief) after an

off-path offer. Therefore, the best deviation by a seller would be to imitate all types t ∈ [0, t1]

and offer p1 at period N − 1. Thus since regular allocations are incentive compatible (see (3) in

Definition 1) we conclude that no type has a profitable deviation.
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Appendix C: Relaxing the Co-Monotonicity of v and c

We have maintained throughout the assumption that both the seller’s cost, and the buyer’s

value are non-decreasing. Of course, there is no loss of generality in assuming that one of these

functions is non-decreasing. So let us assume that types are ordered so that only the cost function

is non-decreasing, and maintain all other assumptions (besides monotonicity). In particular, gains

from trade are bounded away from zero for all t, and, to avoid trivialities, the seller’s highest

cost exceeds the buyer’s average value. Does there exist a similarly tractable characterization of

the veto-incentive compatible program when the value function is not necessarily increasing? In

that case, it is easy to see that B(t) ≥ 0 for all t is no longer a necessary condition, although it

remains a sufficient condition for implementability. This suggests that non-negative correlation

singles out the collection of intervals {[t, 1] : t < 1} as the relevant one for the domains of the

integral constraints B(t). We view it as an important next step to identify what the “right”

collection of intervals is, if any, over which the expected buyer’s payoff must be positive, when

values are not positively correlated, before turning to more general environments with limited

commitment and private information.

In the absence of such a characterization, we might still ask the question: under which con-

ditions is the ex ante efficient (i.e., surplus-maximizing) allocation of the commitment program

also implementable in the veto-incentive program, or even in the bargaining game as frictions

disappear? The answer to this question is surprisingly simple. Recall that the ex ante efficient

mechanism under full commitment takes a very simple form, with (at most) two thresholds t1

and t2, with 0 < t1 ≤ t2 ≤ 1. If t1 = t2, it is trivial to implement the allocation in the game,

and, a fortiori, in the veto-incentive compatible program, so let us assume that t2 > t1. We have

the following necessary and sufficient condition, which generalizes Proposition 1, at the cost of

being stated in terms of endogenous variables (t1, t2).

Proposition 4 If t2 > t1, the ex ante efficient allocation of the commitment program is imple-
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mentable in the bargaining game as δ → 1 if and only if

c(t2) ≤
1

t2 − t1

∫ t2

t1

v (t) .

Proof. Sufficiency follows closely the construction in 4.2.3 and is omitted. We focus here on

necessity.

This proof makes clear that the condition is equally necessary for veto-incentive compatibility.

Thus, this condition is also necessary and sufficient for implementability in the veto-incentive

compatible program. Recall that, in the ex ante efficient allocation, the seller’s expected transfers

p̄ (t) are given by

p̄ (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− x) c (t1) + xc (t2) t ∈ [0, t1) ,

xc (t2) t ∈ [t1, t2] ,

0 t > t2.

Define the set T̂ as

T̂ := {t ∈ [0, t2] : v (t
′) ≤ v (t) for every t′ ∈ [0, t2]} .

Throughout we assume that the set T̂ is nonempty (this is not guaranteed by our assumptions,

and minor adjustments are necessary otherwise). To ease notation, we let v̂ denote the value of

the function v over the set T̂ .

Suppose that c (t2) > vt2t1 . We want to show that it is impossible to construct a collection of

distributions (μ (· | t))t∈[0,t2] over the interval [0, v̂] that satisfy the following three conditions:

i) for every t ∈ [0, t2], ∫ v̂

0

dμ (p | t) = x (t) ; (15)

ii) for every t ∈ [0, t2], ∫ v̂

0

pdμ (p | t) = p̄ (t) ; (16)
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iii) for all p ∈ [0, v̂], ∫ t2

0

(v (t)− p) dμ (p | t) = 0.

(Recall that under the ex ante efficient mechanism the buyer’s expected payoff is equal to zero.)

We approximate the function v by a sequence of step functions vn, n ∈ N. In particular, each

vn satisfies

i) for every t ∈ [0, t2],

v (t) ≤ vn (t) ≤ v̂,

ii) for every t ∈ [0, 1],

0 ≤ vn (t)− v (t) ≤
1

n
,

iii) if t and t′ belong to the same step of vn, then x (t) = x (t′).

Finally, for each n ∈ N, we let In ⊂ [0, t2] denote the union of the intervals over which the

function vn takes the value v̂.

Fix n ∈ N. For each p < v̂ we have

∫ t2

0

(vn (t)− p) dμ (p | t) = εn (p) ,

for some εn (p) ≥ 0. After dividing both sides by v̂ − p and rearranging terms, we have

∫
t∈In

dμ (p | t) +

∫
t∈[0,t2]\In

(
1−

v̂ − vn (t)

v̂ − p

)
dμ (p | t) =

εn (p)

v̂ − p
≥ 0.

We integrate the two sides of the equality over p, and get

zn :=

∫
t∈In

∫ v̂

0

dμ (p | t) dt+

∫
t∈[0,t2]\In

∫ v̂

0

(
1−

v̂ − vn (t)

v̂ − p

)
dμ (p | t) dt ≥ 0.

For each t ∈ [0, t2] \I
n, let μ̄ (· | t) denote the distribution that assigns probability x (t) to the

offer p̄ (t) /x (t) (with probability 1 − x (t) no offer is made). Notice that the function 1
p−v̂

is
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concave in p. This, together with conditions (15) and (16), implies that, for each n ∈ N,

z̄n :=

∫
t∈In

∫ v̂

0

dμ̄ (p | t) dt+

∫
t∈[0,1]\In

∫ v̂

0

(
1−

v̂ − vn (t)

v̂ − p

)
dμ̄ (p | t) dt ≥ tzn ≥ 0. (17)

We take the limit of z̄n as n goes to infinity, so that

z̄ := limn→∞ z̄n = t1 + (t2 − t1) x−
∫ t1
0 (v̂−v(t))dt

v̂−(1−x)c(t1)−xc(t2)
− x

∫ t2
t1

(v̂−v(t))dt

v̂−c(t2)
=

t1(vt10 −(1−x)c(t1)−xc(t2))
v̂−(1−x)c(t1)−xc(t2)

−
x(t2−t1)(c(t2)−vt2t1)

v̂−c(t2)
<

t1(vt10 −(1−x)c(t1)−xc(t2))−x(t2−t1)(c(t2)−v
t2
t1
)

v̂−(1−x)c(t1)−xc(t2)
= 0,

where the inequality follows from the fact that c (t2) > vt2t1 , and the last equality follows from the

definition of x in equation (6). However, z̄ being strictly negative contradicts the fact that it is

the limit of a sequence of nonnegative numbers (see condition (17)).

Appendix D: A Sufficient Condition for the Efficient Mechanism to be

Implemented in the Bargaining Game

Recall that Y : [0, 1]→ R is defined as

Y (t) :=

∫ t

0

(v (s)− c (t)) ds =

∫ t

0

(v (s)− c (s)− sc′ (s)) ds.

Our assumptions imply that, as mentioned, Y (0) = 0, Y ′ (0) > 0 (if v > c) and Y (1) < 0.

Let t denote the smallest local maximizer of the function Y . Also, let t̄ denote the smallest

strictly positive root of Y . For any t, let μ (t) denote the mechanism under which the types

below t trade with probability one at the price c (t) and the types above t do not trade. Notice

that if Y (t) ≥ 0, then the mechanism μ (t) is incentive compatible and individually rational.

Consider the efficient mechanism under full commitment. We know that there exist 0 < t1 ≤

t2 ≤ 1 such that the seller’s types in [0, t1) trade with probability 1, while the types in [t1, t2]
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trade with probability x (t1, t2) ∈ [0, 1) (all other types of the seller do not trade). Recall that

the buyer’s individual rationality constraint holds with equality. Thus, we have

0 =
∫ t1

0
(v (s)− c (t1)) ds+ x

(
t1c (t1) +

∫ t2

t1
v (s) ds− t2c (t2)

)
=

Y (t1) + x
∫ t2

t1
(v (s)− c (s)− sc′ (s)) ds = Y (t1) + x (Y (t2)− Y (t1)) .

Therefore, we can express x (t1, t2) as

x (t1, t2) =
Y (t1)

Y (t1)− Y (t2)
.

Consider the case in which t2 > t1, i.e., there is a set of types who trade with a probability

larger than zero but smaller than one. First, we must have Y (t2) − Y (t1) < 0, otherwise we

may increase x and improve efficiency. This immediately implies Y (t1) > 0. Second, under the

optimal mechanism Y (t2) < 0. In fact, if Y (t2) ≥ 0, it is possible to implement the mechanism

μ (t2), which is more efficient than the original one. In particular, this implies that t2 > t̄.

Finally, we must have t1 ≥ t. Suppose that t1 < t. Fix t2 of the original mechanism and

choose t′1 ∈ (t1, t]. Consider the mechanism under which the types in [0, t′1) trade with probability

1 while the types in [t′1, t2] trade with probability

x (t′1, t2) =
Y (t′1)

Y (t′1)− Y (t2)
>

Y (t1)

Y (t1)− Y (t2)
= x (t1, t2) ,

where the inequality follows from Y (t′1) > Y (t1) and Y (t2) < 0. Of course, the new mechanism is

more efficient than the original one since the types in [t1, t2] trade with a larger probability while

the types outside this interval trade with the same probability as under the original mechanism.

We summarize our results:

Fact 5 Let t1 and t2 denote the endpoints of the first two steps of the optimal mechanism. Then

t1 ≥ t, and t2 ≥ t̄.
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We are now ready to provide a sufficient condition to implement the efficient mechanism in

the bargaining game (when the players are sufficiently patient).

Condition 6 For any t ≥ t̄, ∫ t

t

(v (s)− c (t)) ds ≥ 0.

We now explain why the above condition is sufficient. Fix 0 < t̃ ≤ 1, and consider the

function ϕ :
[
0, t̃
]
→ R given by

ϕ (t) :=

∫ t̃

t

(
v (s)− c

(
t̃
))

ds.

Under our assumptions, if ϕ (t′) ≥ 0 for some t′, then ϕ (t) > 0 for every t ∈
(
t′, t̃
)
. Recall that

the function v is increasing. Let t′′ denote the value in
[
0, t̃
]
such that v (t′′) = c

(
t̃
)
(let t′′ = t̃

if v
(
t̃
)
< c

(
t̃
)
). The function ϕ is increasing on [0, t′′]. By definition, ϕ is positive above t′′.

Therefore, fix t2 ≥ t̄. Our condition guarantees that for each t1 ∈ [t, t2],

∫ t2

t1

(v (s)− c (t2)) ds ≥ 0,

which implies the result, by Proposition 1.

Appendix E: Proof of Proposition 3 (Sketch)

This appendix sketches the proofs of the two harder statements in Proposition 3. We first

show that the set of allocations in the buyer veto-incentive compatible program is the same

whether or not one imposes ex post seller individual rationality. We then show that, as far as

payoffs are concerned, the latter requirement can even be strengthened to seller veto-incentive

compatibility. In both cases, for simplicity, we restrict attention to finite types. The extension

to our set-up with a continuum of types follows by standard limiting arguments.
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Lemma 9 Assume that c and v are step functions with n steps such that c1 < c2 < · · · < cN ,

and (x, p) is an allocation that is implementable in the veto-incentive compatible program. Then

there exists a measure μ that induces this allocation such that, for all t ∈ T , we have

∫
[0,c(t))

μ (t) [1, dp] = 0.

Proof. Since (c, v) are step functions we can consider the model with N types in which the

probability of each type is qi. We write {μi}
N
i=1 for the distribution of offers faced by type i.

Step 1: We divide the type space into 3 subsets:

T1 := {i ∈ {1, . . . , N} : pi > vi} ,

T2 := {i ∈ {1, . . . , N} : pi < vi} ,

T3 := {i ∈ {1, . . . , N} : pi = vi} .

Step 2: For k ≤ j, define

Lj
k :=

j∑
i=k

qi (xi (vi − pi)) .

Step 3: Notice that LN
0 = B (0) ≥ 0, and let J∗ be the lowest type i such that Li

0 ≥ 0.

Here we show how to construct an allocation satisfying the properties above for the special case

that J∗ = N > 1. The general proof considers a partition of the type space {1, . . . , i1}, {i1 +

1, . . . , i2}, . . . , {iK + 1, . . . , N} and applies this procedure to each set separately.

Step 4: We will present an algorithm which delivers the desired result.

Step 4.1: Let k1 be the smallest element in T2.

There are 2 cases to consider:

Case 1:

q1x1 (v1 − p1) + qk1xk1 (vk1 − pk1) < 0.
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Case 2:

q1x1 (v1 − p1) + qk1xk1 (vk1 − pk1) ≥ 0.

Case 1: Notice that since k1 > 1, we have pk1 ≥ p1. From type k1’s individual rationality

constraint, we have pk1 ≥ ck1 . Also, there exists λ ∈ (0, 1) such that

λq1x1 (v1 − p1) + qk1xk1 (vk1 − pk1) = 0. (18)

Next, notice that

p1 = αpk1 + (1− α) v1, (19)

for some α ∈ (0, 1]. Thus, applying (19) into (18) we have

0 = λq1x1 (1− α) (v1 − v1) + λq1x1α (v1 − pk1) + qk1xk1 (vk1 − pk1) . (20)

Next, we use (20) to show that x = x1 + x̂1, where

x1
i :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λx1 if i = 1,

xk1 if i = k1,

0 otherwise,

and x̂1 := x− x1 ≥ 0. For the allocation (x1, p), we construct a measure {μ1
i }

N

i=1 such that:

a.
(∫

dμ1,
∫
pdμ1

)
= (x1, p);

b. If x1
i > 0 then μ1

i [0, ci) = 0.
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For that, we define μ1
i := 0 if i /∈ {1, k1} and

μ1
1 (p̃) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λx1α if p̃ = pk1

λx1 (1− α) if p̃ = v1

0 otherwise

μ1
k1
(p̃) :=

⎧⎪⎨
⎪⎩

xk1 if p̃ = pk1,

0 otherwise.

Case 2: There exists (ζ, γ) ∈ (0, 1]× (0, 1] such that

p1 = ζpk1 + (1− ζ) v1,

0 = q1x1 (1− ζ) (v1 − v1) + q1x1ζ (v1 − pk1) + γqk1xk1 (vk1 − pk1) .

Thus, we define

x1
i :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 if i = 1,

γxk1 if i = k1,

0 otherwise,

and x̂1 := x−x1 ≥ 0. For the allocation (x1, p), we construct measures {μ1
i }

N

i=1 by setting μ1
i := 0

if i /∈ {1, k1} and

μ1
1 (p̃) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1ζ if p̃ = pk1

x1 (1− ζ) if p = v1

0 otherwise

μ1
k1
(p̃) =

⎧⎪⎨
⎪⎩

γxk1 if p̃ = pk1 ,

0 otherwise.

Step 4.2: Assume that x =
∑M

i=1 x
i + x̂M . There are two possibilities:

Case i.
{
i ∈ {1, . . . , N} : x̂M

i > 0
}
∩ T1 �= ∅.

Case ii.
{
i ∈ {1, . . . , N} : x̂M

i > 0
}
⊆ T2 ∪ T3.

Assume that x̂M−1
i is such that

∑N
i=1 qi

(
x̂M−1
i (vi − pi)

)
≥ 0 and

∑J
i=1 qi

(
x̂M−1
i (vi − pi)

)
< 0

if J < N . We claim:
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Claim 7 If Step 4.1 is applied to x̂M−1
i , x̂M−1

i = xM
i + x̂M

i with
{
i ∈ {1, . . . , N} : x̂M

i > 0
}
∩

T1 �= ∅, then
∑N

i=1 qi
(
x̂M
i (vi − pi)

)
≥ 0 and

∑J
i=1 qi

(
x̂M
i (vi − pi)

)
< 0 if J < N .

Proof: The first conclusion follows since
∑N

i=1 qi
(
x̂M−1
i (vi − pi)

)
=
∑N

i=1 qi
(
x̂M
i (vi − pi)

)
. For

the second, let kM−1 be the largest element of
{
i ∈ {1, . . . , N} : x̂M−1

i > 0
}
∩ T2. There are two

possibilities:

a. J < kM−1 ≤ N . In this case, the result is immediate.

b. kM−1 ≤ J < N . In this case,

0 >
∑
i≤J

qi
(
x̂M−1
i (vi − pi)

)
=

∑
i≤J

qi
(
x̂M−1
i (vi − pi)

)
+
∑
i≤N

qi
((
x̂M
i − x̂M−1

i

)
(vi − pi)

)
=

∑
i≤J

qi
(
x̂M
i (vi − pi)

)
,

where we used the fact that kM−1 ≤ J implies

0 =
∑
i≤N

qi
((
x̂M
i − x̂M−1

i

)
(vi − pi)

)
=
∑
i≤J

qi
((
x̂M
i − x̂M−1

i

)
(vi − pi)

)
.

�

From Claim 7, we can apply Step 4.1 into x̂M
i to obtain xM+1 and x̂M+1 and

{
μM+1
i

}N
i=1

such that:

a’.
(∫

dμM+1,
∫
pdμM+1

)
= (xM+1, p);

b’. If xM+1
i > 0 then μM+1

i [0, ci) = 0.

Notice that this procedure can take (at most) N−1 rounds. In order to complete the Lemma

we move to Case ii.
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Case ii: In this case, define
{
μM+1
i

}N
i=1

by:

μM+1
i (p̃) :=

⎧⎪⎨
⎪⎩

x̂M
i if p̃ = pi

0 otherwise.

Step 5: Assume the algorithm described in Step 4.1 and Step 4.2 was applied to the

allocation x such that x =
K∑
j=1

xj + x̂k. Thus it is straightforward to verify that the measure

{μi}
N

i=1 defined by μi (p̃) :=

K+1∑
j=1

μj
i (p̃) is such that (x, p) =

(∫
dμ,
∫
pdμ

)
and μi[0, ci) = 0. This

completes the proof.

We now turn to the other nontrivial claim: seller veto-incentive compatibility does not restrict

the set of payoffs that can be achieved in the buyer veto-incentive compatible program. Here as

well, attention is restricted to finite types.

Lemma 10 Assume that the type space is finite and let
(
πB, πS

)
be a vertex of the payoff frontier

achieved in the (buyer) veto-incentive compatible program. There exists a seller veto-incentive

compatible measure μ = {μi}
N

i=1 that achieves this payoff.

Proof. Assume that there are N types.30 It can be shown that if
(
πB, πS

)
is a vertex of the

payoff frontier then it is achieved by an allocation (x, p) for which there exists a partition of the

type space: {Pj}
K

j=1 with P1 = {1, . . . , i1} and Pj = {ij−1 + 1, . . . , ij}, with iK ≥ 1 such that:31

i. If j < K, then if i, i′ ∈ Pj we have pi = pi′ = E [v | Pj].

ii. If j = K, then we have either a. or b. below:

a. (pi, xi) = (pN , xN) for all i ∈ PK ;

30For simplicity of exposition we assume that all types trade with positive probability.
31A proof is available upon request.
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b. PK = I1 ∪ I2 where I1 = {ik−1 + 1, . . . , il} and I2 = {il + 1, . . . , N} with ik−1 ≤

il < N is such that (pi, xi) = (p′, x′) if i ∈ I1 and (pi, xi) = (p′′, x′′) if i ∈ I2 with

cil ≤ E [v | i ∈ I1] and p′ < p′′.

Here, we prove the more challenging case b.

Step 1: Define μi for i /∈ PK by:

μi (p̃) :=

⎧⎪⎨
⎪⎩

xi if p̃ = pi,

0 otherwise.

Step 2: To define μi for i ∈ PK , there are two cases to consider:

Case 1: p′ ≤ E [v | i ∈ I1].

In this case we let

μi (p̃) :=

⎧⎪⎨
⎪⎩

x′ if p̃ = p′ and i ∈ I1

0 if p̃ �= p′ and i ∈ I1

μi (p̃) =

⎧⎪⎨
⎪⎩

x′′ if p̃ = p′′ and i ∈ I2,

0 if p̃ �= p′′ and i ∈ I2.

It is straightforward to check that μ is veto-incentive compatible for the seller.

Case 2: p′ > E [v | i ∈ I1].

In this case, notice that since the allocation is incentive compatible we must have

Bik−1+1 =
∑

i≥ik−1+1

qixi (vi − pi) ≥ 0. (21)

Furthermore, because p′ ∈ (E [v | i ∈ I1] , p
′′), there exists α ∈ (0, 1) such that

p′ = αE [v | i ∈ I1] + (1− α) p′′. (22)
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Thus, notice that from (21) and (22),

0 ≤
∑
i∈I1

qixi (vi − pi) +
∑
i∈I2

qixi (vi − p′′)

=
∑
i∈I1

αqixi (vi − E [v | i ∈ I1])

+
∑
i∈I1

(1− α) qixi (vi − p′′) +
∑
i∈I2

qixi (vi − p′′) .

Thus,
∑

i∈I1
(1− α) qixi (vi − p′′) +

∑
i∈I2

qixi (vi − p′′) = Bik−1+1 ≥ 0.

Therefore, we define μi by

μi (p̃) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αx′ if p̃ = E [v | i ∈ I1] and i ∈ I1

(1− α) x′ if p̃ = p′′ and i ∈ I1

0 if p̃ /∈ {p′, p′′} and i ∈ I1

μi (p̃) :=

⎧⎪⎨
⎪⎩

x′′ if p̃ = p′′ and i ∈ I2,

0 if p̃ �= p′′ and i ∈ I2.

It is straightforward to verify that the allocation constructed is veto-incentive compatible for

the seller. This completes the proof.

Appendix F: Proof of Proposition 2

Suppose towards a contradiction that there exists an equilibrium allocation that violates

veto-incentive compatibility. Therefore, there exists η > 0 and t̃ ∈ (0, 1) such that

∫ 1

t̃

∞∑
n=0

δnEσ∗
[
(v(s)− p(s))1ξn

| s
]
ds ≤ −η, (23)

where ξn is defined as the event in which the object being sold in period n and 1ξn
is its indicator

function. Consider a typical history in which an offer is made at n, h̃n. History h̃n includes: i)

all previous offers (as well as the identity of the proposer) before period n; ii) the player who

makes an offer at n; iii) the offer made at period n. Given an on-path history h̃n, we let μh̃n be

67



the associated distribution of types. Since limn→∞ δn = 0 there exists N ≥ 1 such that for all

n ≥ N we have: ∫ 1

t̃

∞∑
n=N

δnEσ∗
[
(v(s)− p(s))1ξn

| s
]
dμh̃n > −η. (24)

Therefore, let N∗ be the largest integer for which there is an on-path history h̃N∗ such that

∫ 1

t̃

∞∑
n=N∗

δnEσ∗
[
(v(s)− p(s)) 1ξn

| s
]
dμh̃N∗ ≤ −η, (25)

and consider a history h̃N∗ satisfying (25). Let p be the offer made by the seller at h̃N∗ and

notice that from the definition of N∗ we have

∫ 1

t̃

δnEσ∗
[
(v(s)− p)1ξn

| s
]
dμh̃N∗ < 0. (26)

There are two cases:

Case 1: The seller is selected to make an offer in period T at h̃N∗ .

From (26) the buyer accepts such an offer with positive probability. Since v(·) is an increasing

function, (26) implies ∫ 1

0

δnEσ∗
[
(v(s)− p)1ξn

| s
]
dμh̃N∗ < 0,

which shows that the buyer could have profitably deviated by rejecting p, offering 0 in every

future period and rejecting every future offer.

Case 2: The buyer is selected to make an offer in period n at h̃N∗ .

Let A ⊂ [0, t̃] be the set of types who accept this offer with probability 1. There are two

possibilities.

Possibility 1: μh̃N∗ (A) = μh̃N∗ ([0, t̃]).
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In this case, the expected payoff of the buyer at h̃N∗ is:

∫ t̃

0

∞∑
n=N∗

δnEσ∗
[
(v(s)− p(s))1ξn

| s
]
dμh̃N∗+

∫ 1

t̃

∞∑
n=N∗

δnEσ∗
[
(v(s)− p(s))1ξn

| s
]
dμh̃N∗

=

∫ t̃

0

δnEσ∗
[
(v(s)− p(s))1ξn

| s
]
dμh̃N∗+

∫ 1

t̃

∞∑
n=N∗

δnEσ∗
[
(v(s)− p(s)) 1ξn

| s
]
dμh̃N∗

≤

∫ 1

t̃

∞∑
n=N∗

δnEσ∗
[
(v(s)− p(s))1ξn

| s
]
dμh̃N∗ < 0, (27)

where we have used the fact that v(·) is monotonic to conclude from (25) that the first term in

the second line of (27) is nonpositive. Thus the buyer obtains a negative continuation payoff at

h̃N∗ , a contradiction.

Possibility 2: μh̃N∗ (A) < μh̃N∗ ([0, t̃]).

In this case, the types [0, t̃]\A reject the offer. From (25) we know that a positive measure of

seller’s types in [0, t̃] accepts this offer. Thus since c is monotonic we conclude that all types in

[0, t̃] \A are indifferent between accepting this offer or not. One can easily show that if all types

[0, t̃]\A were to accept this offer the buyer would be weakly better off. Therefore, it follows from

(27) that the buyer obtains a negative continuation payoff at h̃N∗ , a contradiction.

Appendix G: Details for Samuelson’s Example 1

Notice that E (v) = 1
2
k + Δ. If k ≥ 2, then E (v) ≥ 1 = c (1) for every Δ ≥ 0. In words, for

any k ≥ 2 and every Δ ≥ 0, the first best is implementable in the veto IC program.

Similarly, if k ∈ [0, 2) and Δ ≥ 1 − 1
2
k, then the first best is implementable in the veto IC

program.

In what follows, let us restrict attention to the set of pairs (k,Δ) with 0 ≤ k < 2 and

max {0, 1− k} < Δ < 1−
1

2
k.
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Consider the function

g (k) =
4

4− k
− k.

Notice that g is strictly decreasing in [0, 2) and

max {0, 1− k} < g (k) < 1−
1

2
k

for every k ∈ (0, 2) (the three quantities coincide for k = 0).

Claim 8 Fix k ∈ (0, 2) . If Δ ∈
[
g (k) , 1− 1

2
k
)
, then condition (9) is satisfied.

This means that if Δ ≥ g (k) , then the most efficient outcome of the full commitment

program is implementable in the veto IC program (recall that if Δ ≥ 1− 1
2
k, then the first best

is implementable). When Δ belongs to the nonempty set
[
g (k) , 1− 1

2
k
)
, the first best is not

implementable in the full commitment program. However, the second best is implementable in

the veto IC program.

Proof of the Claim

The function Y (t) is given by

Y (t) =

∫ t

0

(ks +Δ− t) ds =
1

2
t (2Δ− 2t+ kt) .

Let t and t̄ denote the smallest local maximizer and the smallest strictly positive root of Y,

respectively. We have

t = Δ
2−k

, t̄ = 2Δ
2−k

.
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Condition (9) becomes: For every t ≥ 2Δ
2−k

,

Z (t) =

∫ t

Δ
2−k

(ks+Δ− t) ds

=
1

2 (k − 2)2
(
k3t2 − 6k2t2 + 2k2tΔ+ 12kt2 − 10ktΔ+ kΔ2 − 8t2 + 12tΔ− 4Δ2

)
≥ 0.

For every k ∈ [0, 2) , Z is concave in t. Therefore, it is enough to check that Condition (9)

holds at the extremes, 2Δ
2−k

and 1. We have

Z
(

2Δ
2−k

)
= 1

2
k Δ2

(k−2)2
,

Z (1) = 1
2(k−2)2

(k3 + 2k2Δ− 6k2 + kΔ2 − 10kΔ+ 12k − 4Δ2 + 12Δ− 8) .

For every k ∈ [0, 2) , Z (1) is concave in Δ. Consider the expression

(
k3 + 2k2Δ− 6k2 + kΔ2 − 10kΔ+ 12k − 4Δ2 + 12Δ− 8

)
.

The roots are

g (k) = 4
4−k

− k, 2− k.

Therefore, if Δ ∈
[
g (k) , 1− 1

2
k
)
, then Z (1) ≥ 0 and Condition (9) is satisfied.

Appendix H: Markov Equilibria

In this appendix, we show that, at least in the case of finitely (but arbitrarily) many types,

restricting attention to Markov perfect equilibria does not restrict the set of limit equilibrium

payoffs that we characterize in the bargaining game. A Markov strategy is a strategy that only

depends on the (public) belief about the seller’s type. An equilibrium is Markov perfect if all

specified strategies are Markov.

We assume that there are N types: T := {t1, . . . , tN} and that c and v are strictly monotone
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in t. Let qi be the probability of type ti.

We claim that any regular allocation (x, p) can be approximately implemented by Markov

strategies when the players are patient. In a regular allocation, there is a monotone partition

of the type space {T1, . . . , TM}. We focus on the case in which all types trade with positive

probability and in which M > 3 (the other cases are analogous). For every k ∈ {1, . . . ,M},

types t ∈ Tk trade with probability xk at a price pk. Notice that 1 = x1 > · · · > xM and

v(t1) ≤ p1 < · · · < pM . For every k ∈ {1, . . . ,M}, let i(k) := min{i : ti ∈ Tk} and j(k) :=

max{i : ti ∈ Tk}. Define tk = ti(k) and t̄k := tj(k). We have: B(t1) ≥ 0, B(tk) = 0 for every

k < M and B(tM) > 0. Furthermore, all local incentive constraints bind.

For each k ∈ {1, . . . ,M} define

v (Tk) :=

∑
t∈Tk

qiv(ti)∑
t∈Tk

qi
.

Take ε > 0. For (close enough to one) δ we specify a Markov equilibrium that implements

the allocation (xδ, pδ). The family of allocations (xδ, pδ) satisfy limδ↑1

∥∥(xδ, pδ)− (x, p)
∥∥ < ε.

Step 1: Defining an implementable allocation (x′, p′) close to (x, p) which satisfies additional

properties.

Using the fact that c is strictly monotone and that all local incentive constraints bind in

(x, p), it is straightforward to construct an allocation (x′, p′) such that:

a) Every type t ∈ Tk trades with the same probability and at the same price. The allocation

is monotonic and satisfies x′1 = 1 and p1 ≥ v(t1).

b) B(t1) ≥ 0, B(tk) = 0 for every k < M and B(tM) > 0.

c) For every k ∈ {1, . . . ,M − 3} , the type t̄k strictly prefers (x′k, p
′
k) to (x′k+1, p

′
k+1).

d) For every k ∈ {M − 2,M − 1} , the type t̄k is indifferent between (x′k, p
′
k) to (x′k+1, p

′
k+1).

e) Type tM obtains a strictly positive payoff: xM (pM − c(tM)) > 0.

f) It holds that ‖(x′, p′)− (x, p)‖ < ε
2
.
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With some abuse of notation we assume that the original allocation (x, p) satisfies a)–f).

Step 2: Constructing a Markov equilibrium.

The construction is divided into steps (1)–(7).

(1) All types t ∈ T1 make an offer p1 at n = 0. The buyer accepts this offer with probability

1.

(2) Consider types t ∈ Tk for 1 < k < M − 2. All such types offer pk in every period n ≥ 0.

The buyer randomizes and accepts this offer with probability ψδ
k in each period. We set ψδ

k such

that:

xk = ψδ
k + δ(1− ψδ

k)ψ
δ
k + · · · =

(
ψδ

k

1− δ(1− ψδ
k)

)
. (28)

(3) Consider types t ∈ TM−2. For each small η > 0, let

pM−2(η) :=

∑
ti∈TM−2\{t̄M−2} qiv(ti) + qj(M−2)v(t̄

M−2)(1− η)∑
ti∈TM−2\{t̄M−2} qi + qj(M−2)(1− η)

. (29)

That is, assume that a measure ηqj(M−2) of the type t̄
M−2 “leaves” the partition TM−2. Thus,

pM−2(η) is the expected value to the buyer from this new set. Notice that since M > 3, we have

B(tM−2) = B(tM−1) = 0 and hence pM−2 = v (TM−2). Consequently, we have limη→0 p
M−2(η) =

pM−2.

All types ti ∈ TM−2 \
{
t̄M−2

}
offer pM−2(η) in every period n ≥ 0. The type t̄M−2 randomizes.

With probability (1−η), he “joins” this partition and offers pM−2(η) in every period n ≥ 0. With

complementary probability, his behavior is determined by point (4) below. The probability that

the offer pM−2(η) is accepted in each period, ψδ
M−2, is set to yield the payoff xM−2(pM−2−c(t̄

M−2))

to type t̄M−2 :

xM−2(pM−2 − c(t̄M−2)) =

(
ψδ

M−2

1− δ(1− ψδ
M−2)

)(
pM−2(η)− c(t̄M−2)

)
. (30)
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For future reference, let ψ̄
δ

M−2 solve:

xM−2(pM−2 − c(t̄M−2)) =

(
ψ̄

δ

M−2

1− δ(1− ψ̄
δ

M−2)

)(
v(t̄M−2)− c(t̄M−2)

)
, (31)

and notice that ψ̄
δ

M−2 < ψδ
M−2 if and only if TM−2 \

{
t̄M−2

}
�= ∅.

(4) Next, we specify the behavior of the remaining types. Remember that B(tM−1) = 0 and

B(tM) > 0 and hence pM−1 > v(TM−1). Therefore, there is a unique β ∈ (0, 1) such that:

xM−1pM−1 = βxM−1v(TM−1) + (1− β)xM−1v(TM−1 ∪ TM). (32)

In period n = 0, all types t ∈ TM−2 ∪ TM−1 together with a measure
(
η

2

)
of type t̄M−2 offer

pM−1,M−20 :=

∑
ti∈TM−2∪TM−1

qiv(ti) + qj(M−2)v(t̄
M−2)

(
η

2

)
∑

ti∈TM−2∪TM−1
qi + qj(M−2)

(
η

2

) . (33)

The buyer accepts this offer with probability ψδ
0. This probability is set such that the type

t̄M−2 is indifferent between:

a) Offering v(t̄M−2) in every future period. In this case, the buyer randomizes and accepts

this offer with probability ψ̄
δ

M−2 (see (31)) the type t̄
M−2 obtains a payoff xM−2(pM−2−c(t̄M−2)).

b) Offering pM−1,M−20 for one period. If the buyer rejects it (which happens with probability

(1− ψδ
0)) the seller reverts to strategy a) in the next period.

A measure
(
η

2

)
of types t̄M−2 chooses b).

Inductively, we define

pM−1,M−2n :=

∑
ti∈TM−2∪TM−1

qiv(ti) + qj(M−2)v(t̄
M−2)

(
η

2n+1

)
∑

ti∈TM−2∪TM−1
qi + qj(M−2)

(
η

2n+1

) , (34)

and define ψδ
n analogously for all n ≤ n∗ (n∗ is defined below). Notice that the total discounted
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probability that the buyer purchases the good in periods n = 0, . . . , n∗ is:

Xδ
n∗ := ψδ

0 + δ(1− ψδ
0)ψ

δ
1 + · · ·+ δn

∗

[
n∗−1∏
n=0

(1− ψδ
n)

]
ψδ

n∗ . (35)

Next, define n∗ as the minimum integer n such that Xδ
n ≥ (1 − β)xM−1 (see (32)). It is

straightforward to show that the difference
∣∣Xδ

n∗ − (1− β)xM−1

∣∣→ 0 as δ ↑ 1 and η → 0. Below

we define the continuation behavior after n∗.

The type t̄M−2 offers v(t̄M−2) in every future period (and this offer is accepted with probability

ψ̄
δ

M−2).

All types t ∈ TM−1 offer v(TM−1). This offer is accepted with constant probability ψδ
M−1 in

every future period. ψδ
M−1 is set such that type t̄M−2 is indifferent:

(
ψ̄

δ

M−2

1− δ(1− ψ̄
δ

M−2)

)(
v(t̄M−2)− c(t̄M−2)

)
=

(
ψδ

M−1

1− δ(1− ψδ
M−1)

)(
v(TM−1)− c(t̄M−2)

)
. (36)

All types t ∈ TM offer v(TM). This offer is accepted with constant probability ψδ
M in every

future period. ψδ
M is set such that type t̄M−1 is indifferent:

(
ψδ

M−1

1− δ(1− ψδ
M−1)

)(
v(TM−1)− c(t̄M−1)

)
=

(
ψδ

M

1− δ(1− ψδ
M)

)(
v(TM)− c(t̄M−2)

)
. (37)

Next, we explain in (5) why the induced allocation (xδ, pδ) is close to (x, p) when η is small

and δ large. Then we verify in (6) that the induced allocation is indeed an equilibrium when

when η is small and δ large. In (7) we show that the equilibrium is Markov.

(5) It is clear that for all k < M − 1 all t ∈ Tk trade with probability xδ(t) close to x(t) and

at a price pδ(t) close to p(t) (when η is small and δ large). Next, we consider types t ∈ TM−1.

From (36) the type t̄M−2 is indifferent between the allocation (xδ(t), pδ(t)) and always imitating
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types t ∈ TM−1. Therefore, using (30) and (36) we obtain:

xM−2(pM−2 − c(t̄M−2)) (38)

= ψδ
0

(
pM−1,M−20 − c(t̄M−2)

)
+ · · ·+ δn

∗

[
n∗−1∏
n=0

(1− ψδ
n)

]
ψδ
n∗

(
pM−1,M−2n∗ − c(t̄M−2)

)

+δn
∗+1

(
n∗∏
n=0

(1− ψδ
n)

)(
ψδ

M−1

1− δ(1− ψδ
M−1)

)(
v(TM−1)− c(t̄M−2)

)
.

Next, notice that as η → 0 we have pM−1,M−2n∗ → v(TM−1 ∪ TM) and as δ ↑ 1 we have∣∣Xδ
n∗ − (1− β)xM−1

∣∣→ 0. Therefore, for any κ > 0 we can find η1 > 0 and δ1 ∈ (0, 1) such that

whenever η < η1and δ > δ1 we have:

∣∣∣∣∣∣∣∣
ψδ

0

(
pM−1,M−20 − c(t̄M−2)

)
+ · · ·+ δn

∗

[
n∗−1∏
n=0

(1− ψδ
n)

]
ψδ

n∗

(
pM−1,M−2n∗ − c(t̄M−2)

)

−(1 − β)xM−1v(TM−1 ∪ TM)

∣∣∣∣∣∣∣∣
< κ.

Thus, for such parameters we have

xM−2(pM−2 − c(t̄M−2)) (39)

= (1− β)xM−1(v(TM−1 ∪ TM)− c(t̄M−2))

+δn
∗+1

(
n∗∏
n=0

(1− ψδ
n)

)(
ψδ

M−1

1− δ(1− ψδ
M−1)

)(
v(TM−1)− c(t̄M−2)

)
+ zδ,

where zδ ≤ |κ|. Next, using (32) and the fact that type t̄M−2 is indifferent between the allocations

(xM−2, pM−2) and (xM−1, pM−1), we have

xM−2(pM−2 − c(t̄M−2)) (40)

= βxM−1(v(TM−1)− c(t̄M−2)) + (1− β) xM−1(v(TM−1 ∪ TM)− c(t̄M−2)).
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From (39) and (40) we immediately have:

βxM−1(v(TM−1)− c(t̄M−2))

= δn
∗+1

(
n∗∏
n=0

(1− ψδ
n)

)(
ψδ

M−1

1− δ(1− ψδ
M−1)

)(
v(TM−1)− c(t̄M−2)

)
+ zδ,

which implies that δn
∗+1

(
n∗∏
n=0

(1− ψδ
n)

)(
ψδ
M−1

1−δ(1−ψδ
M−1)

)
→ βxM−1. Using a similar argument we

conclude that for all t ∈ TM the allocation
(
xδ(t), pδ(t)

)
can be made as close as we want to

(x(t), p(t)) by taking η is small and δ close to 1.

(6) We show that the induced allocation is indeed an equilibrium.

We start defining the off-path behavior. First, consider a deviation by the buyer. The only

off-path action is to reject the offer p1 at n = 0 (as the buyer should randomize over all other

offers). If the buyer rejects p1 at n = 0, the equilibrium specifies that the buyer does not

update his belief and accepts the same offer with probability 1 in the next period. Following

this deviation, the equilibrium prescribes that the seller makes the same offer in the subsequent

period. If the seller deviates and does not offer p1, the continuation equilibrium is the same as

the one triggered by an off-path offer made by the seller (see below).

Now, consider an off-path deviation by the seller. First, assume that the seller makes an

off-path offer. In this case, we impose that the buyer puts probability 1 on the seller being type

t1 and never revises his belief again. The buyer accepts any future offer p if and only if p ≤ v(t1).

Type ti offers v(t1) if (v(t1) − c(ti)) ≥ 0 and v(tM) + 1 otherwise. Therefore, he guarantees a

payoff [v(t1) − c(ti)]
+. We postpone the description of the seller’s continuation strategy after a

deviation to an offer which is made on the equilibrium path to the end of (6).

Now, we show that the buyer does not have a profitable deviation. Notice that since B(t1) ≥ 0

and B(t2) = 0 we have v(T1) ≥ p1 and hence the buyer would never profit by rejecting the offer

p1. Next, notice that the buyer obtains zero payoffs from all other (on-path) offers and hence he
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cannot profitably deviate by accepting or rejecting any such offer with probability 1. Finally,

consider the buyer off-path behavior induced by a seller deviation. In this case, the buyer puts

probability 1 on the seller having type t1. Since no offer lower than v(t1) will ever be made, it is

evident that the strategy of accepting an offer p if and only if p ≤ v(t1) is optimal.

Let us now show that the seller has no profitable deviation.

First, consider a seller with a type t < t̄M−2 and assume that t ∈ Tk. Let us first contemplate

the deviation to some offer pj ∈ {p1, . . . , pM−3} \ {pk} in the first period. Notice that since the

buyer’s acceptance rate is constant we may (w.l.o.g.) assume that the seller offers pj in every

subsequent period. Since the allocation (x, p) is monotonic and incentive compatible, (28) implies

that there is no profitable deviation.

Next, let us consider a deviation to the offer pM−2 (η) at n = 0 (thus assume implicitly that k <

M−2). Notice that we have assumed in (c) in Step 1 that type t̄M−3 strictly prefers (xM−3, pM−3)

to (xM−2, pM−2). Notice that the allocation (xδ
M−2, pM−2 (η)) approaches (xM−2, pM−2) as η ↓ 0.

Therefore, offering pM−2 (η) at every n ≥ 0 is strictly dominated by following the equilibrium

strategy.

Finally, let us contemplate the deviation to some offer p ∈
{
v(t̄M−2), pM−1,M−20

}
in the first

period. Assume that type t seller deviates by pooling with types t ∈ TM−1 ∪ TM until period

n ≤ n∗.

First, assume that n = n∗. At time n∗ + 1 one of the following 4 options is a best-response

for type t : i) Offer v(t1) in every n ≥ n∗ + 1 with the buyer accepting this offer with constant

probability 1 in each future period; ii) Offer v(t̄M−2) in every n ≥ n∗+1 with the buyer accepting

this offer with constant probability ψ̄
δ

M−2 in each future period; iii) Offer v(TM−1) in every

n ≥ n∗ + 1 with the buyer accepting this offer with constant probability ψδ
M−1 in each future

period; iv) Offer v(TM) in every n ≥ n∗ + 1 with the buyer accepting this offer with constant

probability ψδ
M in each future period. By construction type t̄M−1 is indifferent between iii) and

iv), hence by single-crossing type t̄M−2 prefers iii) to iv). By construction type t̄M−2 is indifferent
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between iii) and ii). Furthermore, since xM−2(pM−2 − c(t̄M−2)) ≥ (v(t1)− c(t̄M−2)) (because we

have a regular allocation) we conclude that option ii) is a best-response to type t̄M−2. Thus, from

single-crossing any best-response for type t is either i) or ii).

Next, let us analyze the incentives of type t in period n∗. Consider the fictional environment

in which the possibilities of type t are enriched in period n∗ : He has options i), ii) (above) and

v): Offer pM−1,M−2n∗ in every period n ≥ n∗ with the buyer accepting this offer with constant

probability ψδ
n∗ in each future period. Type t̄M−2 is indifferent between ii) and v) and hence

type t would never choose v) at n∗. Thus we conclude that type t would never pool with types

t ∈ TM−1 ∪ TM until period n∗. The (essentially) same argument implies that type t would never

pool with types t ∈ TM−1 ∪ TM until period n = n∗ − 1.

By induction, we conclude that type t never pools with types TM−1 ∪ TM and hence he has

a best-response in which he offers p ∈
{
p1, . . . , pM−2 (η) , v(t̄

M−2)
}
in every n ≥ 0. However,

type t̄M−2 is indifferent between offering
{
pM−2 (η) , v(t̄

M−2)
}
in every n ≥ 0. Thus, from single-

crossing we conclude that type t has a best-response in the set {p1, . . . , pM−2 (η)}. Therefore, from

the analysis in the previous two paragraphs we conclude that type t does not have a profitable

deviation.

One can use an analogous argument to show that no type t > t̄M−2 has a profitable deviation.

Finally, we specify the seller’s strategy after a deviation to an offer which is made on the

equilibrium path. We consider a type t < t̄M−2. A similar construction holds for every type

t ≥ t̄M−2 (omitted for brevity). First, assume that type t ∈ Tk has deviated in every period n ≤ ñ

and offered p ∈
{
p1, . . . , pM−2 (η) , v(t̄

M−2)
}
and let ψδ(p) denote the (constant) probability that

the buyer accepts this offer in each future period. The best-response of the seller depends on the

maximizer of

A :=

{(
ψδ(p)

1− δ(1− ψδ(p))

)
(p− c(t)) , (v(t1)− c(t)) , 0

}
.

If 0 ∈ argmaxA, then the seller offers v(tM) + 1 in every future period. Otherwise, if

79



(
ψδ(p)

1−δ(1−ψδ(p))

)
(p− c(t)) ∈ argmaxA the seller offers p in each future period.

Finally, if (v(t1)− c(t)) = argmaxA, the seller offers v(t1) in each future period.

Next, assume that type t has offered pM−1,M−2n in every period n ≤ ñ (ñ ≤ n∗). We have to

compare

(
ψ̄
δ
M−2

1−δ(1−ψ̄
δ
M−2)

)
(v(t̄M−2)− c(t)) and (v(t1)− c(t)). If

(
ψ̄
δ
M−2

1−δ(1−ψ̄
δ
M−2)

)
(v(t̄M−2)− c(t)) ≥

(v(t1)− c(t)) (resp.

(
ψ̄
δ
M−2

1−δ(1−ψ̄
δ
M−2)

)
(v(t̄M−2)− c(t)) < (v(t1)− c(t))) the seller offers v(t̄M−2)

(resp. v(t1)) in every future period.

Now, assume that type t has offered pM−1,M−2n in every period n ≤ n∗ and offered p ∈{
v(t̄M−2), v(TM−1), v(TM)

}
in every period n ∈ {n∗+1, . . . , n∗+ k}. Let ψδ(p) be the (constant)

probability that the buyer accepts the offer p in each period. As above, the seller’s offer in every

future period is determined by the maximizer of A.

The case in which the seller has offered pM−1,M−2n in every period n ≤ ñ (ñ ≤ n∗) and has

offered v(t̄M−2) in every period n ∈ {ñ + 1, . . . , ñ + k} is clearly analogous to the cases above

(omitted for brevity).

(7) Now we establish that the strategies are Markov.

Let

P :={p1, . . . , pM−3, pM−2 (η) , v(t̄
M−2), pM−1,M−20 , . . . , pM−1,M−2n∗ , v(TM−1), v(TM)}

be the set of on-path offers (assume that pM−2 (η) �= v(t̄M−2), otherwise eliminate v(t̄M−2) from

P).

Notice that in the equilibrium that we constructed, the behavioral strategy of type t at a

history h depends on which partition the history h belongs to.

i) Partition 1: h = ∅, the initial history;

ii) Partition p (p ∈ P, thus there are |P | of such partitions): h �= ∅ and “no deviation” has

been detected by the buyer. In this case, the behavioral strategy of the type t seller depends

only on the offer p that was made in the last period.
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iii) Partition D : The buyer detected a deviation in h. (Remember that in this case the offer

made by type t is determined by argmax {(v(t1)− c(t)) , 0}.)

Notice that the history i) is associated with the initial belief q0 ∈ Δ (T ). Notice also that if

the buyer has not detected any deviation then each offer p ∈ P made in the last period leads to

a different posterior which we call q(p). Finally, notice that if an offer belongs to the partition D

then the buyer puts probability 1 on the seller being type t1.We write q ({t1}) for this posterior.
32

Therefore, the seller’s strategy depends only on the prior q (q ∈{q ({t1}) ,q0}∪{q(p) : p ∈ P}).

Finally, since the buyer’s behavioral strategy precludes that he accepts any on-path p ∈ P

with probability ψδ(p) and accepts any off-path offer if and only if it is no greater than v(t1) we

conclude that the buyer plays a Markov strategy.
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