Collegio Carlo Alberto

Economic Principles Problem Set 3

- 1. (JR 2.8). The consumer buys bundle x^i at price p^i , i = 0, 1. Separately for parts (a) to (d), state whether these indicated choices satisfy WARP:
 - (a) $p^0 = (1,3), x^0 = (4,2); p^1 = (3,5), x^1 = (3,1).$ (b) $p^0 = (1,6), x^0 = (10,5); p^1 = (3,5), x^1 = (8,4).$ (c) $p^0 = (1,2), x^0 = (3,1); p^1 = (2,2), x^1 = (1,2).$ (d) $p^0 = (2,6), x^0 = (20,10); p^1 = (3,5), x^1 = (18,4).$
- 2. Consider the set of outcomes $C = \{c_1, c_2, c_3\}$, and let \mathcal{L} denote the set of simple lotteries over C. Suppose that the preference relation \succeq over \mathcal{L} satisfies the independence axiom, and that $c_1 \succeq c_2 \succeq c_3$. Show that $c_1 \succeq L \succeq c_3$ for every lottery L.
- 3. Suppose that $U : \mathcal{L} \to \mathbb{R}$ represents the preference relation \succeq . Show that if U has the expected utility form, then \succeq satisfies the independence axiom.
- 4. Consider the following lotteries: (L_1) \$5000 for sure; (L_2) a $\frac{1}{10}$ chance of \$30,000 and a $\frac{89}{100}$ chance of \$5000 (and a $\frac{1}{100}$ chance of nothing); (L_3) a $\frac{11}{100}$ chance of \$5000 (and a $\frac{89}{100}$ chance of nothing); and (L_4) a $\frac{1}{10}$ chance of \$30,000 (and a $\frac{9}{10}$ chance of nothing). Are the preferences $L_1 \succ L_2$ and $L_4 \succ L_3$ consistent with the independence axiom? (Assume that the preference relation is continuous.)
- 5. Let \mathcal{L} denote the set of simple lotteries over the set of outcomes $C = \{c_1, c_2, c_3, c_4\}$. Consider the von Neumann-Morgenstern utility function $U : \mathcal{L} \to \mathbb{R}$ defined by

$$U(p_1, p_2, p_3, p_4) = p_2 u_2 + p_3 u_3 + 4p_4,$$

where u_i , i = 2, 3, is the utility of the lottery which gives outcomes c_i with certainty. Suppose that the lottery $L_1 = (0, \frac{1}{2}, \frac{1}{2}, 0)$ is indifferent to $L_2 = (\frac{1}{2}, 0, 0, \frac{1}{2})$, and that $L_3 = (0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is indifferent to $L_4 = (0, \frac{1}{6}, \frac{5}{6}, 0)$. Find the values of u_2 and u_3 . 6. Let $\mathcal{L} = \{(p_1, p_2) \in [0, 1]^2 : p_1 + p_2 = 1\}$ be the set of lotteries over two outcomes. The preference relation \succeq over \mathcal{L} is represented by the utility function $U : \mathcal{L} \to \mathbb{R}$ defined by

$$U(p_1, p_2) = 3(p_1)^2 + 4(p_2)^2 + 4\sqrt{3}p_1p_2.$$

Find the optimal lottery. Does \succ satisfy the independence axiom?