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Economic Principles
Solutions to Problem Set 8

Question 1

Let p denote the price of the coconuts and w denote the price of Robinson’s time.
Normalize p = 1.

Given the production function, the producer will choose ! to maximize pv/1 — wl.
Hence, the producer’s labor demand

and coconut supply

The producer ’s profit is

The consumer’s problem is
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Hence, the consumer’s coconut demand
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For the coconut market to clear,
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Hence, the Walrasian equilibrium prices are

V30

w:Y and p =1



In the coconut market, y? = 2¢ = % 30=2.1909
Also, labor supply = labor demand = 24 — % =4238.
The consumer’s leisure consumption = % =19.2
Question 2

Robinson’s problem is

max x%hg st.x=v24—-h

We have F.O.C. (where we first transformed the utility function in logarithmic form):
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Hence, we get the same answer as in question 1.

Question 3

Denote pq, pa, w as the prices for good 1, good 2 and labor, respectively.
Normalize w = 1.

Firm 1’s problem is
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and the supply of y; is ..
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Similarly, firm 2’s problem is to choose I to maximize (ps — w)ls.

When py > 1, firm 2’s demand for labor is oo and this is impossible in an equilibrium.
When py < 1, supply of y = 0.

When p; = 1, supply of y, can be anything within the resource constraint.

Hence, firm 2’s profit 7o = 0.

Consumer 1’s problem is
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Hence, firm 1’s labor demand is ~;

Firm 1’s profit
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Hence, consumer 1’s demands are
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Similarly, we find that consumer 2’s demands are
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Since the demand for good 2 is positive, it has to be the case that po = 1 for the market of
good 2 to clear.
For the market of good 1 to clear,
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In summary, the Walrasian equilibrium prices are p; = 4,p; = 1, w = 1.
Firm 1’s labor demand [; = 4, supply of good 1 y; = 2.
Firm 2’s labor demand /5 = 8, supply of good 2 y, = 8.
Each consumer supplies 6 units of labor and each consumes 1 unit of good 1 and 4 units of
good 2.

Question 4

(a) Given the assumptions, for a utility maximizing consumer, M RS;; = 5—; in equilibrium.
Since p’ is the same for each consumer, for any two consumption goods ¢ and j, the M RS
between any two goods is the same for each consumer.

(b) Given the assumptions, a profit maximizing firm that uses inputs k£ and h in the pro-
duction will use them such that M RT'Sy, = ;;—:. Since the input prices are the same for each

firm, the M RT'S between any two inputs is the same for every firm using those inputs.

Question 5
Let P2 = 1.
For consumer 1,
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Hence, the consumer 1’s demands are
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Similarly, we can find that consumer 2’s demands are
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Market clearing condition requires that
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Hence, the Walrasian equilibrium prices are p; = 1%, p2 = 1.
Now, we want to find e! and e? to support allocation ((5,5), (5,5)) .
Fix e}. Then,
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Also, e] =10 —e7, €5 = 10 — —* = ——

We require that 0 < e} <10 and 0 < e} = % < 10.

0 < 51__02% —> ¢ < 2 so a sufficient condition for [e] < 10 &ej < 2] is e less than the
minimum of the two.

ey = 29 <10 = e} > 10 — 2 and a sufficient condition for [e] > 0 & e} > 10 — ] is e}
greater than the maximum of the two.

Hence, max (0,10 — 2) < e < min (10, 2) .
Also, since e! # ¢2, we require that e] # 5.




