Collegio Carlo Alberto

Game Theory Problem Set 2

1. Find all Nash equilibria of the following normal-form games.

a)

	\mathbf{L}	R
U	3,4	-2, 6
D	0,3	-5,1

	\mathbf{L}	R
U	4, 5	3,1
D	4,0	0, 6

~	1
С)
	/

	\mathbf{L}	\mathbf{C}	R
U	6,6	1, 2	3,3
Μ	2, 1	4,7	4, 3
D	3, 4	2, 5	3,9

- 2. (Divide the dollar) Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name the amounts they would like to have, $s_1 \ge 0$ and $s_2 \ge 0$. If $s_1 + s_2 \le 1$, then the players receive the amounts they named; if $s_1 + s_2 > 1$, then both players receive zero. Find all pure-strategy Nash equilibria of this game. Are there equilibria in weakly dominated strategies? Explain.
- 3. Compute all Nash equilibria of the Rock-Scissors-Paper game.

	R	\mathbf{S}	Р
R	0, 0	1, -1	-1,1
\mathbf{S}	-1, 1	0, 0	1, -1
Р	1, -1	-1, 1	0, 0

4. Let $G = (S_1, \ldots, S_n, u_1, \ldots, u_n)$ and $\tilde{G} = (S_1, \ldots, S_n, \tilde{u}_1, \ldots, \tilde{u}_n)$ be two normal-form games with the same number of players and the same set of actions for every player. Suppose that for every player $i = 1, \ldots, n$, there exist two numbers $A_i > 0$ and B_i such that $\tilde{u}_i(s) = A_i u_i(s) + B_i$ for every action profile s in $S_1 \times \ldots \times S_n$. Show that a strategy profile $\sigma = (\sigma_1, \ldots, \sigma_n)$ is a Nash equilibrium of G if and only if σ is a Nash equilibrium of \tilde{G} . 5. Suppose that the normal-form game G^1 is derived from $G = (S_1, \ldots, S_n, u_1, \ldots, u_n)$ by eliminating pure strategies that are strictly dominated in G. Show that a strategy profile $(\sigma_1, \ldots, \sigma_n)$ is a Nash equilibrium of G if and only if σ is a Nash equilibrium of G^1 . (NOTE: if S_i^1 is a subset of S_i , then any probability distribution σ_i in $\Delta(S_i^1)$ may be identified with the probability distribution in $\Delta(S_i)$ that gives the same probabilities as σ_i to the pure strategies in S_i^1 , and gives probability 0 to the pure strategies that are in S_i but not in S_i^1 .)