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Game Theory

Solutions to Problem Set 4

1 Hotelling’s model

1.1 Two vendors

Consider a strategy profile (s1, s2) with s1 # s2. Suppose s1 < $3. In this case,
it is profitable to for player 1 to deviate and choose a location s} € (s1, s2). To
see this, note that

sh+s s1+ s
uy (87,82) = 12 LN 12 2=u1(31,52).

Thus, in a pure-strategy Nash equilibrium both players choose the same
location. Consider now the profile (s1 = s,s2 = s) where s # 1/2. In this case,
both players get 1/2. However, if a player deviates and chooses 1/2, her payoff
is strictly greater than 1/2. So, we are left with (s; =1/2,s2 =1/2). In this
case, no player has an incentive to deviate:

1 1 1 s +1
ui<si:2,sj:2> = §> 22:ul<s'i7sj ),wheres§<

1 1 1 sh+ 3 1 1
ui(si:2,sj—2> = 2>1—Z22:ui<s;,sj:2>,wheresg>2

Thus, we conclude that the unique pure-strategy NE is (s1 = 1/2, 80 = 1/2).

1.2 Three vendors

We consider all cases of pure strategy profiles and show that in each case at
least one player has an incentive to deviate.

First, suppose the players choose three different locations, say s; < s2 < s3.
It is easy to check that each player has a profitable deviation. For example,
player 1 has an incentive to choose s} € (s1, s2).

Now, suppose that two players, say 1 and 2 choose the same location s and
player 3 chooses s3 # s. If s3 > s player 3 prefers to choose any s} € (s, s3),
while if s3 < s player 3 prefers to choose any s} € (s3, ).

Finally, suppose all players choose the same location s. The payoff of every
player is 1/3. Suppose that s # 1/2. Then, player 1 can choose s; = 1/2 and
assure herself of a payoff greater than 1/2, which is greater than 1/3. Hence,



player 1 has an incentive to deviate. Suppose instead that s = 1/2. Then, there
exists an € > 0 sufficiently small such that

U1 (51 :1/2—6,822 1/2,83 = 1/2) >

Wl =

2 Air strike

We have the following normal-form game. The set of players is {A, B}. The
sets of actions (pure strategies) are Sy = Sp = {1,2,3}. The players’ payoffs
are described in the following matrix:

1 2 3
1 O7 0 V1, — U1 V1, — U1
2 V2, —U2 O, 0 V2, —U2
3 V3, —U3 V3, —U3 0, 0

where the total (non-destroyed) value of the three targets for player B is
normalized to zero.

Clearly, this game does not admit any pure-strategy NE. Player B would like
to choose the same target as player A, while player A is better off when they
choose different targets. Hence, we have to look for mixed-strategy equilibria.
There are four possible cases to consider: (i) A randomizes between target 1 and
target 3, but does not assign positive probability to target 2; (ii) A randomizes
between target 2 and target 3; (iii) A randomizes between targets target 1 and
target 2; (iv) A randomizes between all three targets.

Some of these cases can be eliminated without any computational work.
First note that in an NE, if player A assigns zero probability to one of the
targets, then player B has to assign zero probability to the same target. (Think
about why.) This, in turn, implies that there can be no NE in which player A
assigns positive probability to target 3 and zero probability to one of the other
targets. To see this, suppose that there is a NE in which player A randomizes
between target 2 and target 3 with probabilities py and p3 = (1 — p3). Then, it
must be that player B assigns zero probability to defending target 1. However,
in that case, assigning probability ps to target 1 is a strictly profitable deviation
for player A, which is a contradiction. Hence, there cannot be a NE in the form
of case (ii). In a similar way, we can show that there cannot be a NE in the
form of case (i). Therefore, we are left with cases (iii) and (iv).

(Case iii) Let the strategy of player A be o4 = (a,1 — «,0) where o €
(0,1). As argued above, player B will not defend target 3. That is, player B
will use a strategy on the form op = (7,1 —v,0) where v € [0,1].

If (a,1 — ,0) is an equilibrium strategy for player A, it must be the case
that:



ug (1, (7,1 =79,0)) = (1 =) vy =yv2 =ua (2,(y,1—,0)),
uA<1’(’7a1_7’0)): (1_7)1)1 >U3ZUA(37(771_7a0))7

which implies:

— V1
7= Yty

V1V
v1+v2 2 Us.

Since v = vﬁvz € (0,1), it must be the case that player B is indifferent
between target 1 and target 2, and prefers target 1 and 2 to target 3. Thus, we

have:

ug ((a,1 —a,0),1) = - (1 —a)vy = —av; = up ((a, 1 — @,0),2),
ug ((,1 —,0),1)=—(1—)va > —av; — (1 — @) va = up ((a, 1 — ,0),3)

which implies:

V1 + U2
where we omit the inequality, after noticing that it is always satisfied. Thus,
f vzi"gZ > w3 the strategy profile 0 4 = (Ulljfw, mUTlvg’ O) ,0B = (Ul'ilv?, Ulﬁf@ , 0)

constitutes a Nash equilibrium.
(Case iv) Let the strategy of player A be g4 (1) = (o, 8,1 — a — ) where
€(0,1),8€(0,1)and 1—a— 8 > 0. Let (y,6,1 — v — &) denote the strategy
of player B. Player A is willing to use all actions if they all yield the same

expected payoff:
ua(1,(7,0,1=7=06)) = (1 =7y)v1 = (1 =0) vz =ua(2,(
AL (7,6,1—y—=0)) =1 —=7)v1=(y+0)vs=ua(3,(7,6,1 —7y—9)).

The solution to the above system is:

* V1V2+V1 V3 —V2V3

v= V1 V2+v1V3+V2U3
§F = V1v2—viv3tvovs
V1V2+v1V3+V203

1—v— § = —U1v2tv1U3tuavg
v1v2+v1v3+v2v3

Notice that v > 0 and § > 0. Of course, we also need 1 —~v — ¢ > 0. This
holds if and only if:

V1V
”l)g} 12 .
V1 + V2

We now need to compute player A’s equilibrium strategy.

Let us assume that vz > % In this case, player B assigns positive prob-

ability to all the actions. Thus, we have to find values of @ and 8 such that
player B is indifferent among all actions:



ug ((a, f,1—a—8),1)=—Pva—(1—a—p)vy =

—avy — (1—a—-p)vs=up (e, 8,1 —a—p),2),

ug (e, B,1—a—=0),1)=—Pra—(1—a—p)vy =
—av; — oy =up ((o, 8,1 —a—f),3),

which implies

* Vo2U3
of = —Y2ts
V1V2+v1V3+v2v3

6* — v1v3
v1v2+v103+V2V3 "

We conclude that if vg > -2t*2 then the Nash equilibrium of the game is

vit+vz’
oA = (Oé*,ﬁ*,]. —a* _5*) y OB = (7*35*71 _’Y* - 6*) :
Ifvg < vqilsz , then player B assigns positive probability only to target 1 and
target 2. Thus, we have:

ug ((a, 8,1 —a—=0),1)=—Pra—(1—a—p)vy =

—avy—(1—a—-B)vs=up (o, 5,1 —a—f),2),

uB((O@ﬁ,]-*O‘*B)a]-):7&”2*(170‘75)1)32
—avi — fra = up (o, B,1 —a = f),3),

which, in turn, implies:

V2U3 _ v2
o> viva+vivatvavs  2(vi+vz)’
— U1
8= 2a.

v

To sum up, we have the following cases.

o Ifug < ;ﬁ’gw there exists a unique Nash equilibrium

— v2 V1
A= \vitoz vitoz 0
o = V1 V2

v1+v2? vi+v2’

o If vg > ”“’52, there exists a unique Nash equilibrium

v1+
o — Va2V3 Vi1v3 V1v2
A v1v2+v1v3+v2v3 ) v1v2F+v1v3+v2v3? v1ve+v1v3+v2vUs
op = V1V24V1V3—VaV3 V1V2—Vi1U3+V2V3 —V1VU2+V1V3+Vav3

v1V2+v1V3+v2v3 7 v1V2+V1V3FV2v3 7 V1V2+V1VU3+V2V3

V12
v1+v2

o Ifvg = . there exist a continuum of Nash equilibria:

o4 = (a, Z—;a, 1— (7”1:2”2) oz)
v~ (s ot

v1tve? vitvz’?

V2 V2
where o € [2(v1+v2), (v1+v2)} .



Clearly, as v3 goes to zero we have only the Nash equilibrium in which both
player A and player B randomize between target 1 and target 2. This is very
intuitive. When the value of target 3 is negligible, player A does not have an
incentive to attack it. Since player A does not attack target 3, player B does
not defend it.

3 First-Price auction with different valuations

First note that, in equilibrium, each player ¢ = 1,...,n can not get the object by
bidding b; > v;. In fact, when b; > v; and player i wins the auction, her payoff
is negative (v; — b;). But then, player i would have an incentive to deviate and
bid, for example, zero.

Now, suppose that player 1 does not get the object. Player 1’s payoff is zero.
Moreover, we just argued that the highest bid then has to be smaller than or
equal to vo. But since v; > vq, a profitable deviation for player 1 is to choose a
bid in the interval (ve,v1) and get a positive payoff.

Notice that this game admits many pure-strategy Nash equilibria. Any
combination of bids on the following form

by =b,by <b,... by <b

with b € [vg,v1] and b; = b for at least one player j € {2,...,n}, is an
equilibrium.

4 A simple Bayesian game

t1:a tlzb
L R L R
Ul 22 [ =20 Ul 02 [1,0
D[0,-2] 0,0 D|[1,-2]20

First of all notice that in any BNE, player 1 chooses D when her type is b.
In fact, for any action of player 2, the payoff of type b (of player 1) from action
D is strictly greater than the payoff from action U.

Suppose that player 2 chooses L. Then type a (of player 1) chooses U and
type b chooses D. The expected payoff of player 2 is .9(2) + .1(—2) = 1.6.
Notice that if player 2 plays R her (expected) payoff is 0. So the strategy profile
((U,D), L) constitutes a BNE.

Suppose that player 2 chooses R. Then both type a and type b choose D.
The (expected) payoff of player 2 is 0. If player 2 plays L, her (expected) payoff
is —2. Thus we have another BNE: ((D, D), R).

Finally, suppose that player 2 randomizes between L and R. Let 8 denote
the probability that player 2 chooses L. Let o denote the probability that type



a chooses U. Remember that type b chooses D in any BNE. Player 2 is willing
to randomize if and only if:

92a—-2(1—-a))+.1(-2)=0

which implies o = g Type a of player 1 is willing to randomize if and only
if:

28—2(1—8)=0
which implies 8 = %
To summarize, the game has the following BNE: ((U, D), L), (D,D), R)
and (¢ =5/9,D), g =1/2).

5 An exchange game

The sets of types of the two players are Ty = Ty = {1, ..., 2, } . The distribution
function over types for each player is F'. However, the distribution will not
matter for the argument made below. (Since the set of types is finite, we make
the standard assumption that all types have positive probability. If a type has
zero probability, we could simply delete it and the analysis below goes through).

Each player ¢ € {1, 2} has the same action set A; = {Y, N}, where Y (N)
means that a player is (is not) willing to exchange the prizes. A pure strategy is
a function from types to actions, s; : T; — A;. Finally, the payofls, as functions
of actions and types, are given by:

i ifa;=a; =Y
ui (@i, a5, 73, ;) = { ij otﬁlerwizje.

[Note that we could instead express the payoffs as functions of strategies
(and types), though to keep notation simple we express them as functions of
actions.|

Now, suppose that a player, say 1, is willing to exchange at a prize z; > x;.
That is, suppose that o1 (Y|z;) > 0 for some x; > z1. This implies that player
2 has to exchange when she has type x1. That is, o2 (Y]z1) = 1. Now consider
type x; of player 1. If she does not exchange, her payoff is x;. On the other
hand, if she exchanges there is a positive probability that her payoff is smaller
than z; (player 1 could face type z1 of player 2 who always trades). Therefore,
type x; of player 1 is willing to exchange only if there exists a type z; > x; of
player 2 who trades with positive probability. Now, consider type z; of player
2. Type x; of player 2 is willing to trade only if there exists a type z, > z;
of player 1 who trades with positive probability. By applying this argument a
finite number of times (remember that the set of types is finite) we conclude
that there exists a player, say 2, who trades with positive probability when her
type is z, (the highest possible type). Obviously, trading is not optimal for
type x, : with positive probability she receives a payoff smaller than z,,, while
if she does not trade her payoff is x,,. Hence, we have a contradiction.



