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1 Proof of Proposition 3

Consider a committee of size n. We look for the optimal mechanism under the re-
striction that all n players acquire information.
The problem is:

where

is the coefficient of vy (k) in IC (i), and
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is the coefficient of ~ (k) in IC (g). We use the convention ("") = (") = 0.
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Our optimization problem falls under the class of problems known as parametric
linear programs. In particular, notice that the solution is continuous in the cost c
(see, for instance, Zhang and Liu [1990]).

The goal is to show that when p is sufficiently close to one the optimal mechanism
takes the form:

%(0):...:%(1{—1):0, ﬁn@‘):a, 7n<l%+1>:...:7n(kn—1):1,

where «, 8 € [0, 1], and 0 < k < k, <k < n.

We assume that p is sufficiently large. Of course, a (0) = —f(1,n) > 0, a(n) =
f(n,n)>0,b(0)=f(0,n)<0and b(n)=—f(n—1,n) <O0.

Notice that for k =1,...,n — 1, we can rewrite a (k) and b (k) as

0= (3 21) 7 [0 =0 = 0P () 0= 5+ = o) (L= ) PG (-],

b(k) = (Z B D% [(k —n(1=p)gP(I)(1=p)" " p"F 4+ (np—k)(1—q) P(G)p*" (1 - p)”*k} :

Clearly, a (k) < 0 and b (k) > 0 for any k € [n (1 — p),np].

Since p is close to one, n (1 — p) < 1 and np > n — 1 and, therefore, a (k) < 0 and
b(k) >0 forevery k=1,...,n— 1.

Throughout, we assume that n is odd and that k, = k,—; (so that IC (i) is the
first constraint to bind when the device is Bayesian). In this case, k, is equal to “31.!

We know that when the cost is ¢ = (12;11) f (kn,n), the Bayesian device satlsﬁes
the IC (i) constraint with equality. For costs above ¢ we need to introduce distortions
in order to induce all n players to acquire information. We also know from Proposition
3* in the Appendix of the paper that for ¢ sufficiently close to ¢ it is optimal to distort
the mechanism at k, = ®:* and set v (k,) smaller than one. As c increases, v (k,)
decreases. Notice, however that there exists a critical value of the cost ¢ > ¢ such
that at ¢ the optimal mechanism is v (0) = =7(%2) =0, v (=) € (0,1),
v (”TJF?’) = ... =7(n) =1, and the value of ~y (”“) is such that both constraints
are satisfied with equality. To see this, note that if v (0) = ... = ~ ("T“) =0
and v (“2) = ... = y(n) = 1, then the LHS of the IC (g) constraint is equal to

("knl)f (kn;n) <O.

We now show that as the cost increases above ¢ it is optimal to continue decreasing

the value of ~ (”+1) and to start increasing the value of ~ ( ) More generally, we

prove the following.

!The cases in which n is even and/or k, = k,_1 + 1 can be analyzed in a similar way.



Claim 1 Assume that we are at a point ¢ > ¢ where the optimal mechanism is

f‘yn(O):...:f_yn(/%):(), 7n<l%+1):...:ﬁn(kn—1):1,
Tolkn) = =7, (k=1) =0, 7, (k) =8, 7, (k+1)=...=7,(n) =1,

A (1)
B €(0,1), and 0 < k < k, < k < n. Suppose that the cost increases. Then it is

optimal to continue decreasing 7,, (/_f) and to start increasing 7,, (/%) .

In what follows, we provide a proof for Claim 1. A symmetric claim also holds:

Claim 2 Assume that we are at a cost ¢ > ¢ where the optimal mechanism is

~ ~

ﬁn(()):...:%<k—1):(), ﬁn(k):a, 7n(/%+1):...:%(kn—1)=1,
Yo (kp) =...=7, (k—1) =0, Yo (k) =7, (k+1)=...=7%,(n) =1,

where a € (0,1), and 0 < k< k, < k < n. Suppose that the cost increases. Then it

18 optimal to continue increasing 7, (l%) and to start decreasing 7,, (k) .

The proof of Claim 2 is identical to that of Claim 1 and is thus omitted. The
combination of these two claims (together with Remark 3 below) provide the proof
of Proposition 3.2

Proof of Claim 1

Note that the optimal device is the solution to a linear programming problem with
two constraints, /C (i) and IC (g), and the additional constraints that every 7 (k)
belongs to [0,1]. It follows that there will be at most two values of k at which ~ (k)
is different from 0 or 1 (see, e.g., Luenberger [1965], Chapter 3). Clearly, the optimal
mechanism is continuous in c¢. Thus, if we start from the device (1) and increase ¢ by
a small amount, the optimal mechanism is such that the value of 7, (l;:) is close to 3.
Therefore, if we start from (1) and increase ¢, one change must pertain to ¥, (k).

In principle, there are different ways to satisfy the constraints when ¢ increases:

1. Decrease the value of (l%) and increase the value of 7y (k) for some k = 1,. .., l;‘;

2. Decrease the value of ~ (E) and increase the value of 7 (k) for some k =

b (= 251) R — 1

2

3. Increase the value of v (l%) and decrease the value of (k) for some k = k +
1,...,n—1;

2Note that in generic environments the optimal distortionary device entails randomization for at
least one profile of reports. Our proof does, however, extend to non-generic cases in which for some
cost levels, the optimal distortionary device entails no randomization.
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4. Increase the value of v (l;:) and decrease the value of v (k) for some k = k+

L. ky—1(=21);

5. Increase the value of v (12:) and increase the value of v (0);

6. Decrease the value of v (k) and decrease the value of v (n).

In all cases, the optimal thing to do is to satisfy both constraints with equality.
Recall that we start at a point where both constraints are binding and the mechanism
is not Bayesian. If we end up with a mechanism under which one constraint is not
binding, the mechanism cannot be optimal.?

Below we prove the following facts:

A In case 1, the optimal distortion is to use l;‘, the largest k available.

B Any change in which we increase (k") and decrease y(k”), where k' = k,,, ...,n —2
and k" = k' 4+1,...,n — 1 has a negative effect on the designer’s expected utility
(the objective function). Furthermore, this change is worse than any change in
which we decrease (k') and increase ~(k), where k =1, ..., k.

C Case 4 is not feasible.
D Case 5 is not feasible.

E Case 6 is not feasible.

Note that the distortions mentioned in Fact A certainly generate a decrease in the
expected value of the designer’s objective function. Fact B implies that case 3 cannot
be optimal directly. In fact, it implies that distortions of the type specified in case 3
generate lower expected values to the designer than distortions of the type specified
in case 1. In particular, the former yield a decrease in the designer’s expected value
as well. Fact B also implies that case 2 cannot be optimal. Indeed, suppose we end
up with a device in which v (k) € (0,1) and y (k) € (0,1) for some k = ky, ..., k—1.
Then consider the following deviation. Decrease the value of v (k) and increase the
value of vy (15) so that the LHS of both constraints decreases by the same (small)
amount d. It follows from the first part of Fact B that this change will increase the

value of the objective function by some amount A > 0.* Now, decrease the value of

3The proof of this fact depends on which case -1 through 6- we are considering. In each case, it
is straightforward to identify a deviation that does not violate either constraint and improves the
utility. For the sake of brevity, we do not include the relevant calculations.

4We know from Fact B that if we increase v (k') and decrease v (k") , where k' = k,,...,n — 2
and k” = k' +1,...,n — 1, then the expected utility decreases. Notice that k < n — 1. Therefore, if
we decrease the value of v (k) for some k = k,,...,k — 1 and increase the value of y (l?:) (i.e., we
take a “mirror image” of the type of changes described in Fact B), then the expected utility must
increase.



7 (k) and increase the value of (12:) forsome k=1,..., l%, so that the LHS of both

constraints increases by ¢ given above. This will decrease the value of the objective
function by A’ > 0. The second part of Fact B implies that A > A’ and so the the
combination of the two changes is feasible and strictly beneficial.

Proof of Fact A

The goal of this section is as follows. Fix k' = k, (: "T“) ,...,n—1and k =
1,..., ”T“ -2 (: ”T_?’) . Suppose that we decrease 7 (k') by > 0 and increase the
value of v (k) by € > 0 to increase the LHS of both constraints by the same (small)
number 0 > 0 (we will show that this is possible). Let Z (k) denote the change of the
value of the objective function. We show that Z (k) < Z (k+1) < 0.

Consider k. To find ¢ and 7, we need to solve

The solution to this system is

a(k')—b(k')
€ = Bt —HF)a®) O
_alk)  a(k)=b(k") 1
M= o) B a(e) b)a® 0~ aw) -

Notice that a (k') —b (k') < 0 and a (k") < 0. Thus, to show that ¢ > 0 and > 0,
it is necessary and sufficient that

b(k)a(K)—0b(K)a(k) <O0.
To simplify the notation we define:

ar (k) = (2)) 3 (n (L —p) — k) gP (1) p"~*
az (k) = (Z1) % (k —np) (1 —q) P(G) pt

so that

Similarly, define

so that



Notice that
bl (k) aq (k/) = bl (k/) aq (k‘)

by (k) ag (K') = by (K) ay (k)
and so
b(k)a (k) —b(k)a(k) =
by (k) az (k') (1 = p)" "2 4 by (k) ay () (1 — p)"
—by (K'Y az (k) (1 —p)" * ™72 — by (W) ay (k) (1 — p)" .

Note that the smallest power of the term (1 — p) in the expression above is n —
k' + k — 2. Therefore, for p close to 1 the sign of b (k) a (k') — b (k') a (k) coincides with
the sign of by (k) as (k') , which is negative.

The total effect Z (k) on the utility is then

Z (k) =v(k)e —v(k)n=

a(k) | a(k)-b(K) o(k)
(” (k) = v (K) a(k’)) b(R)a(K) = 0+ 20

which is negative. In a similar way, for k + 1 we get

Z(k+1)=(v(k+1)—v(kz')a(k+1)) a (k) — b (k)

v
o () 0+

b(k+1)a(k)—0b(K)a(k+1)  a(k)

Recall that we need to show that Z (k+ 1) > Z (k). We subtract ZE::;(S from

Z (k) and Z (k +1). We then multiply both terms by the positive quantity (recall
a (k') <0and b(k') > 0)

We need to show

v(k+1ak)—v(K)a(k+1) wv(k)a(k)—v(k)a(k)
b(k+1a(k)=b(K)a(k+1) = b(k)a(k)—0b(K)a(k)

We multiply both sides by
b(k+1)a(k)=bK)Ya(k+D][bk)a(k)—0b(k)a(k)] >0
and obtain

w(k+1)a(k) —v(E)alk+1)] k) al)—bE)a k)] >
w(k)a () —v(E)a®)]bk+1)alE) —bE)a(k+1)]. (2)



Each side of the inequality contains several terms. However, as p approaches 1, it
suffices to consider the terms with the smallest power of (1 — p) to determine whether
the inequality is satisfied or not.

We now write

where we define

1 (k) =—=()gP (I)p",
vy (k) = () (1 —q) P(G)p".

Then,

v(k)a (k) —v(K)a(k)=v (k) a (k) (1 —p)"* + (k:) 2 (K) (1 — p)ltn=r =1

v (k) ar (K) (1= p)" " 4 0p (k) as () (1 = p)** " — 0y () @ (k) (1 = p)" "
—uy (K ag (k) (1= p) T oy (W) ag (K) (1 — p)" ™ — vy () ag (k) (1 — p)*™ %1
The smallest power of (1 — p) is k+n —k’—1 (similarly, if we switch k£ with £+ 1,

the smallest power would be k 4+ n — £').
Consider now the LHS of inequality (2):

wk+1a(k)—v(E)a(k+1)][b(k)a(k)—b(K)a(k)].

The term with the smallest power of (1 — p) is vy (k + 1) as (k') by (k) as (k') and
that power is 2(n — k' — 1+ k).
Consider the RHS of inequality (2):

[v(k)a (k) —v(E)a(k)][b(E+1)a(k)—b(k)a(k+1)].

The term with the smallest power of (1 — p) is vy (k) as (k') by (k + 1) ay (k') and
that power is 2(n — k' — 1+ k).
Thus, the two sides have the same powers and we have to show that

o1 (k4 1) by () (a5 (K))* > o1 (k) by (k + 1) (az ()"
We divide both sides by (as (k'))* and compute the value of
U1 (k’ + ].) bl (k?) — U1 (k’) b1 (k’ + ].)

when p = 1 (by continuity, the sign of the expression extends to p close to 1).
When p =1,
Ul(]{?+1)b1 (l{?) —Ul(k)bl(]{?+1) =

(P (D) [= (1) G2) + () ()] =



2 n! (n—1)! W e ]
(qP (1)) ~ DI n—k—1)! (e=Din—R) k:!(nfk)!k!(nszfl)!i| =

2 n!l(n—1)! k
(¢P (1)) (n—k—1)!(n—k)!(k!)2 (_k:_+1 + 1) > 0.

This concludes the proof of Fact A.

Proof of Fact B

In this section we will prove the following. Consider &' = k, (: ”TH) yeee, L — 2,
E'=K-+1,....n—1landk=1,..., ”T_l Consider two different courses of action. In
the first one, we decrease 7 (k') by n > 0 and increase the value of v (k) by € > 0 to
increase the LHS of both constraints by the same (small) number 6 > 0. Let Z (k)
denote the corresponding change of the value of the objective function (this is the
case analyzed in the previous section). In the second course of action, we increase
v (k") by n > 0 and decrease the value of v (k") by € > 0 to increase the LHS of
both constraints by the same (small) number § > 0. This will change the value of
the objective function by Z (k") . We want to show that Z (k") < Z (k). (Recall that
7 (k) < 0. Thus, the inequality Z (k") < Z (k) will also prove the first part of Fact
B.)

Consider the second course of action. We need to solve the following system of

equations:
—a(k")e+a(k)n=3.

—b(K")e+b(K)n =0

The solution is
a(k')—b(k') 5
b(k")a(k")—b(k")a (k') ">

— a(k") a(k")—b(k") 1
= a(w) b(k’)a(k”)—b(k”)a(k’)5 T a(k’)é'

E =

It is simple to check that when p is close to 1 both € and 7n are positive. Notice
also that the denominator of ¢ is negative.
The total effect on the objective function Z (k") is equal to

Z (K" =v(K)n—v(k")e=

() (K)-b(1) )
(v (k) Sy — v (k’")) bl SO + a0

Recall that Z (k) is equal to

J.

5+U(k’)

B Cak)\ alk)—b(k)
Z“”‘(“@*‘“%)a >b%wmw»—mwwu@ o ()

(~)

We subtract %5 from both Z (k") and Z (k) and multiply both by 5#% > 0.
It remains to show that
v(k)a (k) —v(K)a(k) vE)a(k") —v (k") a(k)

b(F)a (k) —b(F)a(k) ~ b(k)a (k) —b(E)a(k)
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We multiply both sides by [b (k) a (k') — b (k') a (k)] [b (k') a (k") —b(K")a (k)] > 0
and get
v (k) a (k) —v (k) a(k)][b(K)a k") —b(E")a (k)] >

0 () a () — o (k") a (8)] [ (K)a () — b () a (4] @)
For each term inside the square brackets we now identify the element with the

smallest power of (1 —p).
We already know from the previous section that for [b(k)a (k') — b (k') a (k)] we

select by (k) az (K') (1 — p)n_k,+k_2 .
In a similar way, for [b (k") a (k") — b (k") a (k)] we select by (k") ag (E") (1 — p)nfk”+k’f2 ‘
Consider now [v (k) a (k') — v (k') a (k)]. We select vy (k) aq (k') (1 — p)k+"_k/_1 ,
Finally, consider [v (k") a (k") — v (k") a (K")] . We select

[s (K) az (K') — va (K") aa (K')] (1 — p)* ¥ =F"=1,

Thus for p close to 1, inequality (3) is satisfied if and only if the following inequality
is satisfied:

o1 (k) ag (K') by (K) ag (K7) (1 — p)*nF" =3 5

[v2 (K') az (K") — va (k") az (K)] by (k) a (') (1 — p)> 2K =472

The exponent of the RHS is strictly smaller than the exponent of the LHS. Thus,
it suffices to show

[vy (") ag (K") — va (K") ag (K")] by (k) az (K') < 0.

Notice that for p close to 1, by (k) as (k') < 0. We now evaluate the difference
vg (k') ag (k") —vq (k") as (K') at p = 1 and show that it is positive. By continuity, the
above inequality will be satisfied when p is close to 1.

When p =1,

(%) (k?/) (05} (k)”) — VU2 (k’”) (05} (k,) =
(1 =) PG [(2) (02D 5 = (0) G2) 5] =
(1= q) PG))? el (K = ) > 0,

Y n—k") KR!

This concludes the proof of Fact B.

Proof of Fact C
Consider k=1,...,k,—1 (: ”T_l) and k' =k, (: "TH) ,...,n—1. Suppose that
we want to decrease the value of v (k) and increase the value of v (k') to increase the
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LHS of both constraints by the same positive amount 9. We now show that this is
impossible.

If the change described above is possible then there exist € > 0 and 1 > 0 that
solve the following system

—a(k)e+a(K)n=4,
—b(k)e+b(k)n=0.
The solution is

a(k)-b(K) ¢
(K a(k)—b(k)a(k") O

E =

_a(k) a(k)—b(k') 1
M= 2wy b0 ah) b0 + a0

Notice that a (k') — b (k") < 0. Moreover, we know from the analysis above that

for p close to 1 the sign of
b(K)a(k)—0b(k)a (k)

coincides with the sign of —b; (k) ag (k') , which is positive. Thus, € and 1 must be
negative.

Proof of Fact D

Consider k = k,,,...,n — 1. Suppose that we want to increase both the value
of v (k) and the value of 7 (0) to increase the LHS of both constraints by the same
positive amount 9. We now show that this is impossible.

If the change described above is possible then there exist € > 0 and 1 > 0 that

solve the following system
a(0)e+a(k)n=0,

b(0)e+b(k)n=74.
The solution is

— __ak)=b(k)
€= b(O)a(k)—b(k)a(O)(s’

_ _a0) _ a(k)—b(k) _1
= "4k b(O)a(k)—b(k)a(O)(S + a(k)(s‘

Notice that a (k) — b (k) < 0. We now show that b (0) a (k) — b (k) a (0) is positive,
which implies that ¢ is negative.
Recall that

a(0)=—f(Lin)=qP(I)p" " (1-p) —(1—q) P(G)p(1—p)""

and that
b(0) = f(0;n) =—qP(I)p" + (1 —q)P(G)(1—p)".

For p close to 1 the sign of b(0)a (k) — b(k)a(0) coincides with the sign of
—qP (I) az (k) which is positive.

10



Proof of Fact E
Consider k = k,,...,n — 1. Suppose that we want to decrease both the value

of v (k) and the value of v (n) to increase the LHS of both constraints by the same

positive amount §. We now show that this is impossible.
If the change described above is possible then there exist ¢ > 0 and n > 0 that

solve the following system

The solution is
oo __am-bn) s
b(n)a(k)—b(k)a(n) "’
_ _a(k) __ a(n)=b(n) _ 1
1= ~a@m) b(m)a(k)—b(k)a(n) a n)(s'

Recall that
a(n)=f(nin)=—q¢P(I)(1-p)"+(1-q) P(G)p"

and that
b(n)=—f(n—1in)=qP()p(L—p)" ' —(1-q)P(G)p" " (1-p).

Define a; (n) = —¢P (I) and az (n) = (1 —q) P(G)p™. Also, define by (n) =

P (I)p and by (n) = — (1 —q) P(G)p"~".
The numerator of ¢ is positive. We now show that the denominator of ¢ is negative.

We have to show b(n)a (k) —b(k)a(n) < 0 for p large. Notice that (after some
simplifications)

by (n) as (k) (1= p)*" "2 + by (n) ay (k) (1 — p)**!

b(n)a(k) —b(k)a(n) =
—b1 (k)ag (n) (1 — p)kfl — by (k)ay (n) (1 —p)

The smallest power of (1 —p) is k — 1, and thus for p close to 1 the sign of
b(n)a (k) —0b(k)a(n) coincides with the sign of —b; (k) as (n) which is negative.

Remark 3 Suppose that there exists a cost ¢ such that the optimal device takes the
form

70)=0, y()=...=79k -1 =1, y(ky)=... =7 -1)=0 ”
4

y(K)=a K +1)=...=v(n)=1

then k' =n —1 and a < 1.

11



Similarly, suppose that there exists a cost ¢ such that the optimal device takes the
form

¥, 0)=...=7,(K"=-1)=0, 7, (K")=p8, 3, K"+1)=...=7, (k,—1) =1,
Vo (kp) =... =7, (n—=1)=0, 7,(n)=1,

then k" =1 and 5 > 0.

An implication of the first part of the remark is the following. Suppose k' were
smaller than n— 1, and consider a cost ¢ above ¢’. To satisfy the constraints, we could
increase the value of v (k') and decrease the value of y (k) for some k = kK'+1,... ,n—1.
On the other hand, if ¥ = n — 1 as claimed then it is impossible to modify the
mechanism in order to satisfy both constraints. A similar implication follows from
the second part of the remark and therefore the optimal device must take the form
specified in Proposition 3.

Proof of Remark 3

We provide the proof for the first claim. The proof for the second claim is analo-
gous.

To see that k' = n — 1 when p is close to 1, consider the device described in (4).
Both constraints are satisfied with equality. Thus,

F (L) = (o) £ (554) + () ((in) + (L= a) (1) f (K + Lin) =
—fOsn) + () f (55) —a(p) f (= Lin) = (L= a) (")) f (Kn)

(and both sides are equal to ). Notice that as p approaches 1 the RHS of the equality
converges to ¢P (I) (since —f (0;n) contains the term ¢P (I) p" and every other term
contains (1 —p)" for some r > 0). If ¥’ < n — 1, the LHS converges to zero (since
each term contains (1 — p)" for some r > 0) and the equality cannot be satisfied.

2 Distortionary Mechanisms when NN is Fixed and
p is Close to 1

In Proposition 2 we fix ¢, P(I), p and let N go to infinity. In Proposition 3 and
the notes above, we fix N and let p approach 1. The following Proposition extends
Proposition 2 and provides conditions for the optimal extended mechanism to involve
distortions when, indeed, N is fixed and p is large.

Proposition 2* Fiz N, q and P (I) and assume that either ¢P (I) > 2 (1 — q) P (G)
or qP (I) < %(1 —q) P(G). There ezists p < 1 such that for every p > p the
following holds. For any n = 2, ..., N, suppose that the Bayesian device with n
agents 1s admissible. Then there exists an admissible distortionary device with
n+ 1 agents that yields greater expected utility than V (n) .

12



Proof of Proposition 2*

To simplify the notation, we define D = ¢gP (/) and F = (1 — q) P (G) . The proof
depends on which of the two cases specified in the proposition holds and on whether
n is even or odd. We present the proof for the case D > 2E and n odd (so that
n > 3). The other three cases follow analogously.

When p is close to 1, and n is odd, then k, = ”TH Moreover, z (n) is strictly
larger than  but very close to 7. In particular, k, — z (n) < %

We now adapt the proof of Proposition 2. Clearly, when p is close to 1, the
inequalities used in the proof of Proposition 2: k, — 1 > n (1 — p) and k, < np, are
satisfied. As in the proof of Proposition 2 we need to show that as < o* and ay < aq,

where )

(@) a4 1) = (270 f (kuin)

) G ) = () f (ks 1)

(=) f Rain) + (1) f kn,7z-%

o =

) (Rt D= (L) F Gy~ L+ 1)
and

*_n—kn—l—l
n+1

The denominators of a; and a4 are positive. We begin with the inequality a* > aw.
We need to show

(n— 22+ 1) [() f (Bhn+1) = (wd ) f (32— Lin+1)] >
(n+1) | () £ (552m) + () F (5sm + 1) |

The easiest way to show that the inequality is satisfied for p close to 1 is to identify,
for each term f (k’;n’), the component with the smallest power of (1 —p).

For f(n+1 n+1) we select —D(l_p)L +E(1_ e w1 p"T“'
For f (T,n—i— 1) we select —D (1 _p)%pn;rs.
1 +1

For f (%2;n) we select E (1 —p) T p.
Thus, when p is sufficiently close to 1, the above inequality is satisfied if and only

”;1( : )D>(n+1) (”%Ql)E

D> FE.

which is equivalent to

n—+1
Clearly, if D > 2F then the inequality is satisfied for every n > 3.
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Consider now the inequality a; > as. We need to show (recall the denominators
are positive):

)7 (52 1) = () (52m) | [ () F (54 1) = ()T (5 + 1)) >
(D) F (5tm) + (501 (5im s D] () (524 1) = () f (5m + 1)

2 2

We proceed as above and identify the components with the smallest power of
(1—p).

For f (™2;n+ 1) we select E (1 — p)%1 ',

For f ("TH,n - 1) we select —D (1 —p)nTHp"Tl +E( _p)n;l e
For f (%52;n + 1) we select —D (1 — p) =N 't

For f (“*;n) we select E (1 —p) 2 P

Thus, we need to show

B[() = (D] 0= D(L) (1-p)F >

n—1
E(ii) (L—p) 7 E() (1—p) =
We divide both sides by E (1 — p)"~ " yielding

P[lp) = (o)l ()20 ()

Notice that (nﬁl) = (7;11) and that (ﬂl) = (n’fl). Therefore, the inequality
2 2 2
above translates into

P ) () > 2 () ()

We divide both sides by (%1 i 1) (»21) and get
2

D( 2n —1>>E
n—+1

The inequality is satisfied for every odd n > 3 provided that D > 2F.

S
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